ELLIS Summer School on Probabilistic Machine Learning Sequential Inference and Learning

Arno Solin ELLIS Scholar / Assistant Professor in Machine Learning Aalto University

July 2023 · Cambridge, UK

It's all about the tools in your toolbox

CC-NC: https://xkcd.com/1524/

What is sequential machine learning?

Sequential inference / streaming

Continual learning

Timeseries

- Long/unbounded data
- Dynamical systems
- Recurrent NNs *etc.*

- "Life-long learning"
- Non-stationarity
- Model keeps changing
- Data keep changing

Bayesian optimization / active learning

- ► How to pick points?
- Sequential decisions
- Connections to RL etc.

Goals

- Remind you of basic principles of direct links between signal processing and machine learning
- Provide an intuitive hands-on understanding of what stochastic differential equations are all about
- Show how these methods have real benefits in speeding up learning, improving inference, and model building

Motivation: Temporal models

One-dimensional problems

(the data has a natural ordering)

Spatio-temporal models (something developing over time)

Long / unbounded data

(sensor data streams, daily observations, etc.)

Machine learning

Tools for dealing with time-series

Moment representation Considering the statistical properties of the input data jointly over time

- Spectral (Fourier) representation Analyzing the frequency-space representation of the problem/data
- State space (path) representation
 Description of sample behaviour as a dynamic system over time

Spectral (Fourier) representation

Fourier transform $\mathcal{F}[\cdot]$:

$$ilde{f}(\omega) = \int f(\mathbf{x}) \, \exp(-\mathsf{i} \, \omega^\mathsf{T} \mathbf{x}) \, \mathsf{d} \mathbf{x}$$

Analyzing properties of 'systems' (input–output mappings) by transfer functions:

$$H(s) = rac{Y(s)}{X(s)} = rac{\mathcal{L}[y(t)](s)}{\mathcal{L}[x(t)](s)},$$

where $\mathcal{L}[\cdot]$ is the Laplace transform

Discrete-time state space models

► A canonical state space model:

Dynamics (prior): $\mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{q}_k),$ $\mathbf{q}_k \sim N(\mathbf{0}, \mathbf{Q}_k),$ Measurement (likelihood): $\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{r}_k),$ $\mathbf{r}_k \sim N(\mathbf{0}, \mathbf{R}_k)$

The key to efficiency is the directed graph: The Markov property.

Kalman filtering and smoothing

Closed-form solution to linear-Gaussian filtering problems

$$\begin{split} \mathbf{x}_k &= \mathbf{A} \, \mathbf{x}_{k-1} + \mathbf{q}_k, & \mathbf{q}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}_k), \\ \mathbf{y}_k &= \mathbf{H} \, \mathbf{x}_k + \mathbf{r}_k, & \mathbf{r}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{R}_k) \end{split}$$

Filtering solution: $p(\mathbf{x}_k | \mathbf{y}_{1:k}) = N(\mathbf{x}_k | \mathbf{m}_{k|k}, \mathbf{P}_{k|k})$ Smoothing solution: $p(\mathbf{x}_k | \mathbf{y}_{1:T}) = N(\mathbf{x}_k | \mathbf{m}_{k|T}, \mathbf{P}_{k|T})$

Non-linear filtering

► Typically **x**_k is assumed Gaussian:

$$\begin{aligned} & \mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{q}_k), & & \mathbf{q}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}_k), \\ & \mathbf{y}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{r}_k), & & & \mathbf{r}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{R}_k) \end{aligned}$$

- Filtering solution: $p(\mathbf{x}_k | \mathbf{y}_{1:k}) \simeq N(\mathbf{x}_k | \mathbf{m}_{k|k}, \mathbf{P}_{k|k})$
- Smoothing solution: $p(\mathbf{x}_k | \mathbf{y}_{1:T}) \simeq N(\mathbf{x}_k | \mathbf{m}_{k|T}, \mathbf{P}_{k|T})$

Probabilistic inertial-visual odometry for occlusion-robust navigation (https://youtu.be/_ywmtVzxURk)

Everything is more _____ in continuous time.

This is also why we prefer modelling things in function space (think of GPs, analyzing NNs, *etc.*).

S. Särkkä and A. Solin (2019). Applied Stochastic Differential Equations. Cambridge University Press. Cambridge, UK. Book PDF and codes for replicating examples available online.

Differential equations model how things change

Ordinary differential equations (ODEs) (deterministic)

 Stochastic differential equations (SDEs) (stochastic)

What is a stochastic differential equation (SDE)?

Consider an ordinary differential equation (ODE):

$$\frac{\mathsf{d}\mathbf{x}}{\mathsf{d}t} = \mathbf{f}(\mathbf{x}, t)$$

► Then we add white noise to the right hand side:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) + \mathbf{L}(\mathbf{x}, t) \, \mathbf{w}(t)$$

f(x, t) is the drift function and L(x, t) is the dispersion matrix (diffusion term)
 Now we have a stochastic differential equation (SDE)

White noise

- 1. $\mathbf{w}(t_1)$ and $\mathbf{w}(t_2)$ are independent if $t_1 \neq t_2$
- 2. $t \mapsto \mathbf{w}(t)$ is a Gaussian process with mean and covariance:

$$\mathbb{E}[\mathbf{w}(t)] = \mathbf{0},$$

 $\mathbb{E}[\mathbf{w}(t) \, \mathbf{w}^{ op}(s)] = \delta(t-s) \, \mathbf{Q}$

- ► **Q** is the spectral density of the process
- The sample path $t \mapsto \mathbf{w}(t)$ is discontinuous almost everywhere
- White noise is unbounded and it takes arbitrarily large positive and negative values at any finite interval

What does a solution of an SDE look like?

Solution paths of a stochastic spring model

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \gamma \, \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \nu^2 \, x(t) = w(t)$$

< □ ▶

SDEs as white noise-driven differential equations

Treating SDEs as white noise-driven differential equations has its limits

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) + \mathbf{L}(\mathbf{x}, t) \, \mathbf{w}(t)$$

- ► For linear equations the approach works
- ▶ But this interpretation breaks down in the general setting:
 - The chain rule of calculus starts giving wrong answers!
 - With non-linear differential equations the behaviour becomes unexpected
 - Trying to prove the existence of solutions becomes tricky
- The source of the problems is the everywhere discontinuous white noise $\mathbf{w}(t)$
- ► So how should we really formulate SDEs?

Equivalent integral equation

We have a differential equation of the form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) + \mathbf{L}(\mathbf{x}, t) \, \mathbf{w}(t)$$

Integrating the differential equation from t_0 to t gives:

$$\mathbf{x}(t) - \mathbf{x}(t_0) = \int_{t_0}^t \mathbf{f}(\mathbf{x}(t), t) \, \mathrm{d}t + \int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathbf{w}(t) \, \mathrm{d}t$$

- ▶ The first integral is just a Riemann/Lebesgue integral
- The second integral is the problematic one due to the white noise (this is the interesting part!)

Attempt 1: Riemann integral

▶ In the Riemannian sense the integral would be defined as

$$\int_{t_0}^t \mathbf{L}(\mathbf{x}(t),t) \mathbf{w}(t) dt = \lim_{n \to \infty} \sum_k \mathbf{L}(\mathbf{x}(t_k^*),t_k^*) \mathbf{w}(t_k^*) (t_{k+1}-t_k),$$

where $t_0 < t_1 < ... < t_n = t$ and $t_k^* \in [t_k, t_{k+1}]$

- ▶ Upper and lower sums are defined as the selections of t_k^* such that the integrand $L(\mathbf{x}(t_k^*), t_k^*) \mathbf{w}(t_k^*)$ has its maximum and minimum values, respectively
- The Riemann integral exists if the upper and lower sums converge to the same value
- Because white noise is discontinuous everywhere, the Riemann integral does not exist

Attempt 2: Stieltjes integral [1/2]

- ► A Stieltjes integral is more general and allows for discontinuous integrands
- We can interpret the increment $\mathbf{w}(t) dt$ as increments of another process $\beta(t)$ such that

$$\int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathbf{w}(t) \, \mathrm{d}t = \int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathrm{d}\beta(t).$$

▶ It turns out that a suitable process for this purpose is Brownian motion...

Brownian motion

1. Gaussian increments:

 $\Delta \beta_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q} \Delta t_k),$

where $\Delta \beta_k = \beta(t_{k+1}) - \beta(t_k)$ and $\Delta t_k = t_{k+1} - t_k$

2. Non-overlapping increments are independent

- **Q** is the diffusion matrix of the Brownian motion.
- Brownian motion $t \mapsto \beta(t)$ has discontinuous derivative everywhere
- White noise can be considered the formal derivative of Brownian motion $\mathbf{w}(t) = d\beta(t)/dt$

Attempt 2: Stieltjes integral [2/2]

Stieltjes integral is defined as a limit of the form

$$\int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathrm{d}\boldsymbol{\beta} = \lim_{n \to \infty} \sum_k \mathbf{L}(\mathbf{x}(t_k^*), t_k^*) \left[\boldsymbol{\beta}(t_{k+1}) - \boldsymbol{\beta}(t_k)\right],$$

where $t_0 < t_1 < ... < t_n$ and $t_k^* \in [t_k, t_{k+1}]$

- ▶ The limit t_k^* should be independent of the position on the interval $t_k^* \in [t_k, t_{k+1}]$
- For integration with respect to Brownian motion this is not the case
- Thus, the Stieltjes integral definition does not work either

Attempt 3: Lebesgue integral

In a Lebesgue integral we could interpret β(t) to define a 'stochastic measure'
 Essentially, this will also lead to the definition

$$\int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathrm{d}\boldsymbol{\beta} = \lim_{n \to \infty} \sum_k \mathbf{L}(\mathbf{x}(t_k^*), t_k^*) \left[\boldsymbol{\beta}(t_{k+1}) - \boldsymbol{\beta}(t_k)\right],$$

where $t_0 < t_1 < \ldots < t_n$ and $t_k^* \in [t_k, t_{k+1}]$.

- ▶ Again, the limit should be independent of the choice $t_k^* \in [t_k, t_{k+1}]$
- ▶ Also our 'measure' is not really a sensible measure
- The Lebesgue integral does not work either

Attempt 4: Itô integral

- ► The solution to the problem is the Itô stochastic integral
- ▶ The idea is to fix the choice to $t_k^* = t_k$, and define the integral as

$$\int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathrm{d}\boldsymbol{\beta}(t) = \lim_{n \to \infty} \sum_k \mathbf{L}(\mathbf{x}(t_k), t_k) \left[\boldsymbol{\beta}(t_{k+1}) - \boldsymbol{\beta}(t_k) \right]$$

- ▶ This Itô stochastic integral turns out to be a sensible definition of the integral
- However, the resulting integral does not obey the computational rules of ordinary calculus
- Instead of ordinary calculus we have Itô calculus

Itô stochastic differential equations

Consider the white noise-driven ODE

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x},t) + \mathbf{L}(\mathbf{x},t) \, \mathbf{w}(t)$$

► This is actually defined as the Itô integral equation

$$\mathbf{x}(t) - \mathbf{x}(t_0) = \int_{t_0}^t \mathbf{f}(\mathbf{x}(t), t) \, \mathrm{d}t + \int_{t_0}^t \mathbf{L}(\mathbf{x}(t), t) \, \mathrm{d}\beta(t),$$

which should be true for arbitrary t_0 and t

▶ Which can be written (considering the limits 'small') as

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{L}(\mathbf{x}, t) d\beta$$

This is the canonical form of an Itô SDE

Connection with white noise-driven ODEs

Let's formally divide by dt, which gives

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x},t) + \mathbf{L}(\mathbf{x},t) \, \frac{\mathrm{d}\boldsymbol{\beta}}{\mathrm{d}t}$$

- ► Thus we can interpret dβ/dt as white noise w (not an entity as such, only the formal derivative)
- Note that we cannot define more general equations

$$\frac{\mathsf{d}\mathbf{x}(t)}{\mathsf{d}t} = \mathbf{f}(\mathbf{x}(t), \mathbf{w}(t), t),$$

because we cannot re-interpret this as an Itô integral equation

Non-linear SDEs

▶ There is no general solution method for non-linear SDEs

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{L}(\mathbf{x}, t) d\beta$$

- However, numerical simulation of solution trajectories is usually possible (e.g., with stochastic Runge–Kutta)
- ▶ The simplest alternative is the Euler–Maruyama method:

$$\hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \mathbf{f}(\hat{\mathbf{x}}(t_k), t_k) \,\Delta t + \mathbf{L}(\hat{\mathbf{x}}(t_k), t_k) \,\Delta \beta_k,$$

where $\Delta \beta_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q} \Delta t)$

Solution concepts in SDEs

Path of a Brownian motion which is solution to stochastic differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = w(t)$$

- Strong vs. weak solutions
- Evolution of the probability density of the solution trajectories is given by the Fokker–Planck–Kolmogorov PDE

Summary

- Stochastic differential equations (SDE) can be seen as differential equations with a stochastic driving force
- ▶ SDEs are typical in physics, engineering, and finance applications
- A heuristic white noise formulation has problems with the chain rule, non-linearities, and solution existence
- ► Instead, use the Itô stochastic integral (calculus)
- Various solution concepts; in general, non-linear SDEs are tricky to solve (good schemes for simulation exist though)

Gaussian processes

- GPs are powerful tools for model specification and inference.
- Meaningful uncertainty estimates and a direct way to include *prior* knowledge.
- Do not require ad hoc tinkering (plug & play).

GP classification with a Bernoulli likelihood
GPs are associated with limitations

Scaling to large data

A naïve solution to dealing with the expanded Gram (covariance) matrix requires $O(n^3)$ compute and $O(n^2)$ memory. Infeasible for n > 10,000.

Dealing with non-conjugate likelihoods

For a Gaussian observation model the GP posterior is available in closed-form. For non-conjugate likelihood models one has to resort to approximate inference methods.

Representational power

Gaussian processes are ideal for problems where it is easy to specify *meaningful* priors. For applications such as image classification this is hard.

Three views into (stationary) GPs

Kernel (moment) representation

$$egin{aligned} f(t) &\sim \mathsf{GP}(\mu(t), \kappa(t, t')) & ext{ GP prior} \ \mathbf{y} \mid \mathbf{f} &\sim \prod_i p(y_i \mid f(t_i)) & ext{ likelihood} \end{aligned}$$

- ► Let's focus on the GP prior only.
- ► A temporal Gaussian process (GP) is a random function *f*(*t*), such that joint distribution of *f*(*t*₁),..., *f*(*t_n*) is always Gaussian.
- ▶ Mean and covariance functions have the form:

 $\mu(t) = \mathbb{E}[f(t)],$ $\kappa(t, t') = \mathbb{E}[(f(t) - \mu(t))(f(t') - \mu(t'))^{\mathsf{T}}].$

► Convenient for model specification, but expanding the kernel to a covariance matrix can be problematic (the notorious $O(n^3)$ scaling).

Three views into (stationary) GPs

Spectral (Fourier) representation

▶ The Fourier transform of a function $f(t) : \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{F}[f](\mathsf{i}\,\omega) = \int_{\mathbb{R}} f(t) \,\exp(-\mathsf{i}\,\omega\,t)\,\mathsf{d}t$$

For a stationary GP, the covariance function can be written in terms of the difference between two inputs:

$$\kappa(t,t') \triangleq \kappa(t-t')$$

- Wiener–Khinchin: If f(t) is a stationary Gaussian process with covariance function κ(t) then its spectral density is S(ω) = F[κ].
- Spectral representation of a GP in terms of spectral density function

$$S(\omega) = \mathbb{E}[\tilde{f}(\mathsf{i}\,\omega)\,\tilde{f}^{\mathsf{T}}(-\mathsf{i}\,\omega)]$$

Three views into (stationary) GPs

State space (path) representation [1/3]

Path or state space representation as solution to a linear time-invariant (LTI) stochastic differential equation (SDE):

 $d\mathbf{f} = \mathbf{F} \mathbf{f} dt + \mathbf{L} d\boldsymbol{\beta},$

where $\mathbf{f} = (f, df/dt, ...)$ and $\beta(t)$ is a vector of Wiener processes.

► Equivalently, but more informally

$$rac{\mathrm{d}\mathbf{f}(t)}{\mathrm{d}t} = \mathbf{F}\,\mathbf{f}(t) + \mathbf{L}\,\mathbf{w}(t),$$

where $\mathbf{w}(t)$ is white noise.

- ▶ The model now consists of a drift matrix $\mathbf{F} \in \mathbb{R}^{m \times m}$, a diffusion matrix $\mathbf{L} \in \mathbb{R}^{m \times s}$, and the spectral density matrix of the white noise process $\mathbf{Q}_{c} \in \mathbb{R}^{s \times s}$.
- ► The scalar-valued GP can be recovered by $f(t) = \mathbf{H} \mathbf{f}(t)$.

State space (path) representation [2/3]

 \blacktriangleright The initial state is given by a stationary state $f(0) \sim N(\bm{0}, \bm{P}_{\infty})$ which fulfills

 $\textbf{F}\,\textbf{P}_{\infty}+\textbf{P}_{\infty}\,\textbf{F}^{T}+\textbf{L}\,\textbf{Q}_{c}\,\textbf{L}^{T}=\textbf{0}$

> The covariance function at the stationary state can be recovered by

$$\kappa(t, t') = \begin{cases} \mathbf{P}_{\infty} \exp((t' - t)\mathbf{F})^{\mathsf{T}}, & t' \ge t\\ \exp((t' - t)\mathbf{F})\mathbf{P}_{\infty} & t' < t \end{cases}$$

where $exp(\cdot)$ denotes the matrix exponential function.

▶ The spectral density function at the stationary state can be recovered by

$$S(\omega) = (\mathbf{F} + \mathrm{i}\,\omega\,\mathbf{I})^{-1}\,\mathbf{L}\,\mathbf{Q}_{\mathrm{c}}\,\mathbf{L}^{\mathrm{T}}\,(\mathbf{F} - \mathrm{i}\,\omega\,\mathbf{I})^{-\mathrm{T}}$$

State space (path) representation [3/3]

- Similarly as the kernel has to be evaluated into covariance matrix for computations, the SDE can be solved for discrete time points {*t_i*}^{*n*}_{*i*=1}.
- ▶ The resulting model is a discrete state space model:

$$\mathbf{f}_i = \mathbf{A}_{i-1} \, \mathbf{f}_{i-1} + \mathbf{q}_{i-1}, \quad \mathbf{q}_i \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}_i),$$

where $\mathbf{f}_i = \mathbf{f}(t_i)$.

► The discrete-time model matrices are given by:

$$\begin{split} \mathbf{A}_{i} &= \exp(\mathbf{F} \Delta t_{i}), \\ \mathbf{Q}_{i} &= \int_{0}^{\Delta t_{i}} \exp(\mathbf{F} \left(\Delta t_{i} - \tau\right)) \mathbf{L} \mathbf{Q}_{c} \mathbf{L}^{\mathsf{T}} \exp(\mathbf{F} \left(\Delta t_{i} - \tau\right))^{\mathsf{T}} \mathsf{d}\tau, \end{split}$$

where $\Delta t_i = t_{i+1} - t_i$

▶ If the model is stationary, **Q**_{*i*} is given by

$$\mathbf{Q}_i = \mathbf{P}_\infty - \mathbf{A}_i \, \mathbf{P}_\infty \, \mathbf{A}_i^\mathsf{T}$$

Kalman filtering and smoothing

Closed-form solution to linear-Gaussian filtering problems

$$\begin{aligned} \mathbf{x}_i &= \mathbf{A}_{i-1} \, \mathbf{x}_{i-1} + \mathbf{q}_{i-1}, & \mathbf{q}_i \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}_i), \\ \mathbf{y}_i &= \mathbf{H} \, \mathbf{x}_i + \mathbf{r}_i, & \mathbf{r}_i \sim \mathsf{N}(\mathbf{0}, \mathbf{R}_i) \end{aligned}$$

Filtering solution: $p(\mathbf{x}_i | \mathbf{y}_{1:i}) = N(\mathbf{x}_i | \mathbf{m}_{i|i}, \mathbf{P}_{i|i})$

Smoothing solution: $p(\mathbf{x}_i | \mathbf{y}_{1:T}) = N(\mathbf{x}_i | \mathbf{m}_{i|T}, \mathbf{P}_{i|T})$

Three views into GPs

Example: Exponential covariance function

Exponential covariance function (Ornstein-Uhlenbeck process):

$$\kappa(t,t') = \exp(-\lambda |t-t'|)$$

► Spectral density function:

$$\mathcal{S}(\omega) = rac{2}{\lambda + \omega^2/\lambda}$$

Path representation: Stochastic differential equation (SDE)

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = -\lambda f(t) + w(t),$$

or using the notation from before:

$$F = -\lambda$$
, $L = 1$, $Q_c = 2$, $H = 1$, and $P_{\infty} = 1$.

Examples of applicable GP priors

Applicable GP priors

- ► The covariance function needs to be Markovian (or approximated as such).
- Covers many common stationary and non-stationary models.
- Sums of kernels: $\kappa(t, t') = \kappa_1(t, t') + \kappa_2(t, t')$
 - Stacking of the state spaces
 - State dimension: $m = m_1 + m_2$
- Product of kernels: $\kappa(t, t') = \kappa_1(t, t') \kappa_2(t, t')$
 - Kronecker sum of the models
 - State dimension: $m = m_1 m_2$

The input-output pairs

• Consider the GP regression problem with input–output training pairs $\{(t_i, y_i)\}_{i=1}^n$:

$$\begin{split} f(t) &\sim \mathsf{GP}(0, \kappa(t, t')), \\ y_i &= f(t_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma_\mathsf{n}^2) \end{split}$$

The posterior mean and variance for an unseen test input t_{*} is given by (see previous lectures):

$$\mathbb{E}[f_*] = \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(t_*, t_*) - \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{k}_*^\mathsf{T}$$

▶ Note the inversion of the $n \times n$ matrix.

Draw from the GP posterior with a Matérn prior

Draws from the GP posterior

Draws from the GP posterior

The GP posterior marginals

The GP posterior marginals

- The sequential solution (goes under the name 'Kalman filter') considers one data point at a time, hence the linear time-scaling.
- Start from m₀ = 0 and P₀ = P∞ and for each data point iterate the following steps.
- ► Kalman prediction:

$$\mathbf{m}_{i|i-1} = \mathbf{A}_{i-1} \, \mathbf{m}_{i-1|i-1}, \\ \mathbf{P}_{i|i-1} = \mathbf{A}_{i-1} \, \mathbf{P}_{i-1|i-1} \, \mathbf{A}_{i-1}^{\mathsf{T}} + \mathbf{Q}_{i-1}.$$

► Kalman update:

$$\begin{aligned} \mathbf{v}_{i} &= y_{i} - \mathbf{H} \, \mathbf{m}_{i|i-1}, \\ \mathbf{S}_{i} &= \mathbf{H}_{i} \, \mathbf{P}_{i|i-1} \, \mathbf{H}^{\mathsf{T}} + \sigma_{n}^{2}, \\ \mathbf{K}_{i} &= \mathbf{P}_{i|i-1} \, \mathbf{H}^{\mathsf{T}} \, \mathbf{S}_{i}^{-1}, \\ \mathbf{m}_{i|i} &= \mathbf{m}_{i|i-1} + \mathbf{K}_{i} \, \mathbf{v}_{i}, \\ \mathbf{P}_{i|i} &= \mathbf{P}_{i|i-1} - \mathbf{K}_{i} \, \mathbf{S}_{i} \, \mathbf{K}_{i}^{\mathsf{T}}. \end{aligned}$$

To condition all time-marginals on all data, run a backward sweep (Rauch–Tung–Striebel smoother):

$$\begin{split} \mathbf{m}_{i+1|i} &= \mathbf{A}_{i} \, \mathbf{m}_{i|i}, \\ \mathbf{P}_{i+1|i} &= \mathbf{A}_{i} \, \mathbf{P}_{i|i} \, \mathbf{A}_{i}^{\mathsf{T}} + \mathbf{Q}_{i}, \\ \mathbf{G}_{i} &= \mathbf{P}_{i|i} \, \mathbf{A}_{i}^{\mathsf{T}} \, \mathbf{P}_{i+1|i}^{-1}, \\ \mathbf{m}_{i|n} &= \mathbf{m}_{i|i} + \mathbf{G}_{i} \, (\mathbf{m}_{i+1|n} - \mathbf{m}_{i+1|i}), \\ \mathbf{P}_{i|n} &= \mathbf{P}_{i|i} + \mathbf{G}_{i} \, (\mathbf{P}_{i+1|n} - \mathbf{P}_{i+1|i}) \, \mathbf{G}_{i}^{\mathsf{T}}, \end{split}$$

► The marginal mean and variance can be recovered by:

$$\mathbb{E}[f_i] = \mathbf{H} \mathbf{m}_{i|n}$$
 and $\mathbb{V}[f_i] = \mathbf{H} \mathbf{P}_{i|n} \mathbf{H}^{\mathsf{T}}$

► The log marginal likelihood evaluated as a by-product of the Kalman update:

$$\log p(\mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} \log |2\pi \mathbf{S}_i| + \mathbf{v}_i^{\mathsf{T}} \mathbf{S}_i^{-1} \mathbf{v}_i$$

The state space representation enables efficient inference through Kalman filtering

Example: Births in the US

- Number of births in the US
- ▶ Daily data between 1969–1988 (*n* = 7305)
- ▶ GP regression with a prior covariance function:

$$\begin{split} \kappa(t,t') &= \kappa_{\mathsf{Mat.}}^{\nu=5/2}(t,t') + \kappa_{\mathsf{Mat.}}^{\nu=3/2}(t,t') \\ &+ \kappa_{\mathsf{Per.}}^{\mathsf{year}}(t,t') \, \kappa_{\mathsf{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\mathsf{Per.}}^{\mathsf{week}}(t,t') \, \kappa_{\mathsf{Mat.}}^{\nu=3/2}(t,t') \end{split}$$

► Learn hyperparameters by optimizing the marginal likelihood

Explaining changes in number of births in the US

Example: Aircraft accidents

- Commercial aircraft accidents 1919–2017
- Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
- ▶ Daily binning, n = 35,959
- ▶ GP prior with a covariance function:

$$\kappa(t,t') = \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\text{Per.}}^{\text{year}}(t,t') \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\text{Per.}}^{\text{week}}(t,t') \kappa_{\text{Mat.}}^{\nu=3/2}(t,t')$$

► Learn hyperparameters by optimizing the marginal likelihood

Example: Aircraft accidents

Example: Aircraft accidents

What if the data really is infinite?

On-line inference by infinite time-horizon GPs

https://youtu.be/myCvUT3XGPc

Spatio-temporal GPs

$$f(\mathbf{x}) \sim \mathsf{GP}(0, \kappa(\mathbf{x}, \mathbf{x}'))$$
$$\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{x}_i))$$

$$f(\mathbf{r}, t) \sim \mathsf{GP}(\mathbf{0}, \kappa(\mathbf{r}, t; \mathbf{r}', t'))$$

 $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{r}_i, t_i))$

Spatio-temporal Gaussian processes

GPs under the kernel formalism

$$f(\mathbf{x}, t) \sim \mathsf{GP}(\mathbf{0}, \kappa(\mathbf{x}, t; \mathbf{x}', t'))$$

 $y_i = f(\mathbf{x}_i, t_i) + \varepsilon_i$

Stochastic partial differential equation formalism

$$\frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial t} = \mathcal{F} \mathbf{f}(\mathbf{x},t) + \mathcal{L} w(\mathbf{x},t)$$
$$y_i = \mathcal{H}_i \mathbf{f}(\mathbf{x},t) + \varepsilon_i$$

Spatio-temporal GP regression

Temporal dimension, t

Spatio-temporal GP regression

Temporal dimension, \boldsymbol{t}

Spatio-temporal GP priors

Gaussian processes **♥** SDEs

Different representations of GPs

- ► Gaussian processes have different representations:
 - Covariance function Spectral density State space
- Temporal (single-input) Gaussian processes
 stochastic differential equations (SDEs)
- Conversions between the representations can make model building easier
- ► (Exact) inference of the latent functions, can be done in *O*(*n*) time and memory complexity by Kalman filtering

Monocular depth estimation

- Eyes on opposite sides: Large field-of-view vs. no stereo vision
- Monocular depth-sensing by head wobbling
- 'Multi-view stereo' (MVS) in computer vision
- "Structure from temporal data"

Source: Rooster Portrait on Wikimedia Commons

Priors in larger models

- Inputs: Frame pairs and relative camera poses
- State-of-the-art in CV: Encoder-decoder network for depth estimation

Hou et al. (2019). Multi-view stereo by temporal nonparametric fusion. ICCV.

Online inference on an iPad

9.41 Tue 9 Jan

Previous Frame

Current Frame

Global translation: -0.29 m +0.03 m -0.11 m Global orientation:

Global orientation -35.8° -18.1° +1.4°

https://youtu.be/iellGrlNW7k

🖵 100 % ໜ

Background: Diffusion models

 \blacktriangleright Diffusion models: Iterative denoising using a NN \rightarrow generative model

Benefits:

- Static training objective
- No restrictions on NN architecture
- Allows arbitrary depth
- Optimizes the likelihood of the data
 → tries to cover entire distribution

Background: Diffusion models

Deep latent-variable model with Markov structure

Generation (reverse):

$$p_{ heta}(\mathbf{u}_{k-1} \mid \mathbf{u}_k) \sim \mathcal{N}(\mu_{ heta}(\mathbf{u}_k, k), \Sigma)$$

 $p_{ heta}(\mathbf{u}_{0:K}) = p(\mathbf{u}_K) \prod_{k=1}^{K} p_{ heta}(\mathbf{u}_{k-1} \mid \mathbf{u}_k)$

Inference (forward):

$$q(\mathbf{u}_k \mid \mathbf{u}_{k-1}) \sim \mathcal{N}(\sqrt{1 - \beta_k} \mathbf{u}_{k-1}, \beta_k \mathbf{I})$$
$$q(\mathbf{u}_{1:K} \mid \mathbf{u}_0) = \prod_{k=1}^K q(\mathbf{u}_k \mid \mathbf{u}_{k-1})$$

Motivation for our approach

- Structure of images not directly reflected in the diffusion generative process
- Pixels are next to each other
- Multi-scale behaviour
- Taking this multi-resolution structure into account has lead to quantitative & qualitative improvements in, *e.g.*, GANs

Karras et al., ICLR 2018.

A scale-space view

- Scale-space: A way to represent images on multiple scales
- Resolution decrease defined by the heat equation

$$\frac{\partial}{\partial t}u(x,y,t)=\Delta u(x,y,t)$$

 Satisfies scale-space axioms: Scale invariance, rotational symmetry, ...

$$\frac{\partial}{\partial t}u(\mathbf{x},t)=\Delta u(\mathbf{x},t)$$

Generative inverse heat dissipation

Generative inverse problem

Rissanen et al. (2023). Generative inverse heat dissipation. ICLR.

Comparison of frameworks

Diffusion model

- Increasing dimensionality
- Increasing entropy
- Decreasing smoothness
- Diffusion in pixel space

Inverse heat dissipation model

Information destroying forward process

Generative reverse process

- Decreasing dimensionality
- Decreasing entropy
- Increasing smoothness
- Diffusion in 2D plane of image

The forward process $\frac{\partial u}{\partial t} = \Delta u$

- Choose boundary conditions: u(x, y) derivatives zero at the edges
- > The eigenbasis of the Laplace operator Δ in a rectangle is the cosine basis
- Solve discretized version efficiently and accurately using the discrete cosine transform (use the FFT)

$$\mathbf{u}(t) = \mathbf{F}(t) \quad \mathbf{u}(0) = \mathbf{V} \exp(\Lambda t) \quad \mathbf{V}^{\top} \mathbf{u}(0)$$
ixel vecto
Forward Initial state
Inverse
Diagonal DCT
Scaling
with freqs

F

Model formulation

Inverse heat dissipation model

AFHQ

AFHQ: Same initialization

Hierarchy

Sample diversity

What did we go through now again?

What is sequential machine learning?

Sequential inference / streaming

Continual learning

Timeseries

- Long/unbounded data
- Dynamical systems
- Recurrent NNs etc.

- "Life-long learning"
- Non-stationarity
- Model keeps changing
- Data keep changing

Bayesian optimization / active learning

- How to pick points?
- Sequential decisions
- Connections to RL etc.

What to take home?

- In ML, we already do well in the large-data, gradient-based, static learning regime.
- We struggle when data is scarce, the model/data changes over time, and we require reliability/trust.
- We (should) build on principled foundations with tools that help us develop the next generation of tools.

