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It’s all about the tools in your toolbox
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What is sequential machine learning?

Sequential inference /
streaming

Continual learning Bayesian optimization /
active learning

▶ Timeseries

▶ Long/unbounded data

▶ Dynamical systems

▶ Recurrent NNs etc.

▶ “Life-long learning”

▶ Non-stationarity

▶ Model keeps changing

▶ Data keep changing

▶ How to pick points?

▶ Sequential decisions

▶ Connections to RL etc.
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Goals

▶ Remind you of basic principles of direct links between signal processing
and machine learning

▶ Provide an intuitive hands-on understanding of what stochastic differential
equations are all about

▶ Show how these methods have real benefits in speeding up learning,
improving inference, and model building
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Structure

Part I

Tools from
signal processing

Part II

SDEs
(continuous-time

models)

Part III

Temporal
Gaussian processes

⋆
Part IV

Application
examples
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Motivation: Temporal models

Â One-dimensional problems
(the data has a natural ordering)

Â Spatio-temporal models
(something developing over time)

Â Long / unbounded data
(sensor data streams, daily observations, etc.)

Explaining changes in number of births in the US
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Spatio-temporal modelling of precipitationBrain data (or why not neural networks)

Sensor data modelling
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Machine learning

MLML

Data

Models Algorithms

Where does the sequential nature show?
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Tools for dealing with time-series

▶ Moment representation
Considering the statistical properties of the input
data jointly over time

▶ Spectral (Fourier) representation
Analyzing the frequency-space representation of the
problem/data

▶ State space (path) representation
Description of sample behaviour as a dynamic
system over time
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Spectral (Fourier) representation

▶ Fourier transform F [·]:

f̃ (ω) =

∫
f (x) exp(−i ωTx)dx

▶ Analyzing properties of ‘systems’ (input–output mappings) by transfer
functions:

H(s) =
Y (s)
X (s)

=
L[y(t)](s)
L[x(t)](s) ,

where L[·] is the Laplace transform
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Discrete-time state space models
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· · ·

▶ A canonical state space model:

Dynamics (prior): xk = f(xk−1,qk ), qk ∼ N(0,Qk ),

Measurement (likelihood): yk = h(xk , rk ), rk ∼ N(0,Rk )

▶ The key to efficiency is the directed graph:
The Markov property.
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Kalman filtering and smoothing
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▶ Closed-form solution to linear-Gaussian filtering problems

xk = A xk−1 + qk , qk ∼ N(0,Qk ),

yk = H xk + rk , rk ∼ N(0,Rk )

▶ Filtering solution: p(xk | y1:k ) = N(xk | mk |k ,Pk |k )

▶ Smoothing solution: p(xk | y1:T ) = N(xk | mk |T ,Pk |T )
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Non-linear filtering
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State Gaussian even if dynamics
and measurements non-linear

▶ Typically xk is assumed Gaussian:

xk = f(xk−1,qk ), qk ∼ N(0,Qk ),

yk = h(xk , rk ), rk ∼ N(0,Rk )

▶ Filtering solution: p(xk | y1:k ) ≃ N(xk | mk |k ,Pk |k )

▶ Smoothing solution: p(xk | y1:T ) ≃ N(xk | mk |T ,Pk |T )
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Probabilistic inertial-visual odometry
for occlusion-robust navigation (https://youtu.be/_ywmtVzxURk)

https://youtu.be/_ywmtVzxURk


SDEs
(continuous-time models)

Arno Solin · 15/90



Everything is more in continuous time.

This is also why we prefer modelling things in function space
(think of GPs, analyzing NNs, etc.).
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[ S. Särkkä and A. Solin (2019). Applied Stochastic Differential Equations.
Cambridge University Press. Cambridge, UK.
Book PDF and codes for replicating examples available online.
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Differential equations model how things change

▶ Ordinary differential equations (ODEs)
(deterministic)

▶ Stochastic differential equations (SDEs)
(stochastic)

van der Pol oscillatorStochastic van der Pol oscillator
Ornstein–Uhlenbeck processes
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What is a stochastic differential equation (SDE)?

▶ Consider an ordinary differential equation (ODE):

dx
dt

= f(x, t)

▶ Then we add white noise to the right hand side:

dx
dt

= f(x, t) + L(x, t)w(t)

▶ f(x, t) is the drift function and L(x, t) is the dispersion matrix (diffusion term)
▶ Now we have a stochastic differential equation (SDE)
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White noise

1. w(t1) and w(t2) are independent if t1 ̸= t2
2. t 7→ w(t) is a Gaussian process with mean and

covariance:

E[w(t)] = 0,

E[w(t)w⊤(s)] = δ(t − s)Q

▶ Q is the spectral density of the process

▶ The sample path t 7→ w(t) is discontinuous almost everywhere

▶ White noise is unbounded and it takes arbitrarily
large positive and negative values at any finite interval
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What does a solution of an SDE look like?

Solution paths of a stochastic spring model

d2x(t)
dt2 + γ

dx(t)
dt

+ ν2 x(t) = w(t)
Arno Solin · 21/90



SDEs as white noise–driven differential equations

▶ Treating SDEs as white noise–driven differential equations has its limits

dx
dt

= f(x, t) + L(x, t)w(t)

▶ For linear equations the approach works
▶ But this interpretation breaks down in the general setting:

• The chain rule of calculus starts giving wrong answers!
• With non-linear differential equations the behaviour becomes unexpected
• Trying to prove the existence of solutions becomes tricky

▶ The source of the problems is the everywhere discontinuous white noise w(t)
▶ So how should we really formulate SDEs?
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Equivalent integral equation

▶ We have a differential equation of the form

dx
dt

= f(x, t) + L(x, t)w(t)

▶ Integrating the differential equation from t0 to t gives:

x(t)− x(t0) =
∫ t

t0
f(x(t), t)dt +

∫ t

t0
L(x(t), t)w(t)dt

▶ The first integral is just a Riemann/Lebesgue integral
▶ The second integral is the problematic one due to

the white noise (this is the interesting part!)
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Attempt 1: Riemann integral
▶ In the Riemannian sense the integral would be defined as∫ t

t0
L(x(t), t)w(t)dt = lim

n→∞

∑
k

L(x(t∗k ), t
∗
k )w(t∗k ) (tk+1 − tk ),

where t0 < t1 < . . . < tn = t and t∗k ∈ [tk , tk+1]

▶ Upper and lower sums are defined as the selections of t∗k such that the
integrand L(x(t∗k ), t

∗
k )w(t∗k ) has its maximum and minimum values,

respectively
▶ The Riemann integral exists if the upper and lower sums converge to the

same value

, Because white noise is discontinuous everywhere,
the Riemann integral does not exist
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Attempt 2: Stieltjes integral [1/2]

▶ A Stieltjes integral is more general and allows for discontinuous integrands

▶ We can interpret the increment w(t)dt as increments of another process β(t)
such that ∫ t

t0
L(x(t), t)w(t)dt =

∫ t

t0
L(x(t), t)dβ(t).

▶ It turns out that a suitable process for this purpose is Brownian motion. . .
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Brownian motion

1. Gaussian increments:

∆βk ∼ N(0,Q∆tk ),

where ∆βk = β(tk+1)− β(tk ) and
∆tk = tk+1 − tk

2. Non-overlapping increments are
independent

▶ Q is the diffusion matrix of the Brownian motion.

▶ Brownian motion t 7→ β(t) has discontinuous derivative everywhere

▶ White noise can be considered the formal derivative of Brownian motion w(t) = dβ(t)/ dt
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Attempt 2: Stieltjes integral [2/2]

▶ Stieltjes integral is defined as a limit of the form∫ t

t0
L(x(t), t)dβ = lim

n→∞

∑
k

L(x(t∗k ), t
∗
k ) [β(tk+1)− β(tk )],

where t0 < t1 < . . . < tn and t∗k ∈ [tk , tk+1]

▶ The limit t∗k should be independent of the position on the interval t∗k ∈ [tk , tk+1]

▶ For integration with respect to Brownian motion this is not the case

, Thus, the Stieltjes integral definition does not work either
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Attempt 3: Lebesgue integral

▶ In a Lebesgue integral we could interpret β(t) to define a ‘stochastic measure’
▶ Essentially, this will also lead to the definition∫ t

t0
L(x(t), t)dβ = lim

n→∞

∑
k

L(x(t∗k ), t
∗
k ) [β(tk+1)− β(tk )],

where t0 < t1 < . . . < tn and t∗k ∈ [tk , tk+1].
▶ Again, the limit should be independent of the choice t∗k ∈ [tk , tk+1]

▶ Also our ‘measure’ is not really a sensible measure

, The Lebesgue integral does not work either
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Attempt 4: Itô integral

▶ The solution to the problem is the Itô stochastic integral
▶ The idea is to fix the choice to t∗k = tk , and define the integral as∫ t

t0
L(x(t), t)dβ(t) = lim

n→∞

∑
k

L(x(tk ), tk ) [β(tk+1)− β(tk )]

▶ This Itô stochastic integral turns out to be a sensible definition of the integral
▶ However, the resulting integral does not obey the computational rules of

ordinary calculus
▶ Instead of ordinary calculus we have Itô calculus
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Itô stochastic differential equations
▶ Consider the white noise–driven ODE

dx
dt

= f(x, t) + L(x, t)w(t)

▶ This is actually defined as the Itô integral equation

x(t)− x(t0) =
∫ t

t0
f(x(t), t)dt +

∫ t

t0
L(x(t), t)dβ(t),

which should be true for arbitrary t0 and t
▶ Which can be written (considering the limits ‘small’) as

dx = f(x, t)dt + L(x, t)dβ

▶ This is the canonical form of an Itô SDE
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Connection with white noise–driven ODEs

▶ Let’s formally divide by dt , which gives

dx
dt

= f(x, t) + L(x, t)
dβ
dt

▶ Thus we can interpret dβ/dt as white noise w (not an entity as such, only the
formal derivative)

▶ Note that we cannot define more general equations

dx(t)
dt

= f(x(t),w(t), t),

because we cannot re-interpret this as an Itô integral equation
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Non-linear SDEs

▶ There is no general solution method for non-linear SDEs

dx = f(x, t)dt + L(x, t)dβ

▶ However, numerical simulation of solution trajectories is usually possible
(e.g., with stochastic Runge–Kutta)

▶ The simplest alternative is the Euler–Maruyama method:

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk )∆t + L(x̂(tk ), tk )∆βk ,

where ∆βk ∼ N(0,Q∆t)

Arno Solin · 32/90



Solution concepts in SDEs

▶ Path of a Brownian motion which is solution
to stochastic differential equation

dx
dt

= w(t)

▶ Strong vs. weak solutions
▶ Evolution of the probability density of the

solution trajectories is given by the
Fokker–Planck–Kolmogorov PDE
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Summary

▶ Stochastic differential equations (SDE) can be seen as differential equations
with a stochastic driving force

▶ SDEs are typical in physics, engineering, and finance applications
▶ A heuristic white noise formulation has problems with the chain rule,

non-linearities, and solution existence
▶ Instead, use the Itô stochastic integral (calculus)
▶ Various solution concepts; in general, non-linear SDEs are tricky to solve

(good schemes for simulation exist though)
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Temporal Gaussian processes
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Gaussian processes

m GPs are powerful tools for model
specification and inference.

m Meaningful uncertainty estimates
and a direct way to include
prior knowledge.

m Do not require ad hoc tinkering
(plug & play).

GP classification with a Bernoulli likelihood
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GPs are associated with limitations

þ Scaling to large data
A naı̈ve solution to dealing with the expanded Gram (covariance) matrix
requires O(n3) compute and O(n2) memory. Infeasible for n > 10,000.

þ Dealing with non-conjugate likelihoods
For a Gaussian observation model the GP posterior is available in
closed-form. For non-conjugate likelihood models one has to resort to
approximate inference methods.

þ Representational power
Gaussian processes are ideal for problems where it is easy to specify
meaningful priors. For applications such as image classification this is hard.
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Three views into (stationary) GPs

GPGP

Kernel
(moment)

Spectral
(Fourier)

State space
(path)
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Kernel (moment) representation

f (t) ∼ GP(µ(t), κ(t , t ′)) GP prior

y | f ∼
∏

i

p(yi | f (ti)) likelihood

▶ Let’s focus on the GP prior only.
▶ A temporal Gaussian process (GP) is a random function f (t), such that joint

distribution of f (t1), . . . , f (tn) is always Gaussian.
▶ Mean and covariance functions have the form:

µ(t) = E[f (t)],

κ(t , t ′) = E[(f (t)− µ(t))(f (t ′)− µ(t ′))T].

▶ Convenient for model specification, but expanding the kernel to a covariance
matrix can be problematic (the notorious O(n3) scaling).
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Three views into (stationary) GPs

GPGP

Kernel
(moment)

Spectral
(Fourier)

State space
(path)
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Spectral (Fourier) representation
▶ The Fourier transform of a function f (t) : R→ R is

F [f ](iω) =
∫
R

f (t) exp(−iω t)dt

▶ For a stationary GP, the covariance function can be written in terms of the
difference between two inputs:

κ(t , t ′) ≜ κ(t − t ′)

▶ Wiener–Khinchin: If f (t) is a stationary Gaussian process with covariance
function κ(t) then its spectral density is S(ω) = F [κ].

▶ Spectral representation of a GP in terms of spectral density function

S(ω) = E[f̃ (iω) f̃ T(−iω)]
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Three views into (stationary) GPs

GPGP

Kernel
(moment)

Spectral
(Fourier)

State space
(path)
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State space (path) representation [1/3]
▶ Path or state space representation as solution to a linear time-invariant (LTI)

stochastic differential equation (SDE):

df = F f dt + L dβ,

where f = (f ,df/dt , . . .) and β(t) is a vector of Wiener processes.
▶ Equivalently, but more informally

df(t)
dt

= F f(t) + L w(t),

where w(t) is white noise.
▶ The model now consists of a drift matrix F ∈ Rm×m, a diffusion matrix

L ∈ Rm×s, and the spectral density matrix of the white noise process
Qc ∈ Rs×s.

▶ The scalar-valued GP can be recovered by f (t) = H f(t).
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State space (path) representation [2/3]

▶ The initial state is given by a stationary state f(0) ∼ N(0,P∞) which fulfills

F P∞ + P∞ FT + L Qc LT = 0

▶ The covariance function at the stationary state can be recovered by

κ(t , t ′) =

{
P∞ exp((t ′ − t)F)T, t ′ ≥ t
exp((t ′ − t)F)P∞ t ′ < t

where exp(·) denotes the matrix exponential function.
▶ The spectral density function at the stationary state can be recovered by

S(ω) = (F + iω I)−1 L Qc LT (F− iω I)−T
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State space (path) representation [3/3]
▶ Similarly as the kernel has to be evaluated into covariance matrix for

computations, the SDE can be solved for discrete time points {ti}ni=1.
▶ The resulting model is a discrete state space model:

fi = Ai−1 fi−1 + qi−1, qi ∼ N(0,Qi),

where fi = f(ti).
▶ The discrete-time model matrices are given by:

Ai = exp(F∆ti),

Qi =

∫ ∆ti

0
exp(F (∆ti − τ))L Qc LT exp(F (∆ti − τ))T dτ,

where ∆ti = ti+1 − ti
▶ If the model is stationary, Qi is given by

Qi = P∞ − Ai P∞ AT
i
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Kalman filtering and smoothing

x0 x1

y1

x2

y2

x3

y3
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x5

y5

· · ·xk

▶ Closed-form solution to linear-Gaussian filtering problems

xi = Ai−1 xi−1 + qi−1, qi ∼ N(0,Qi),

yi = H xi + ri , ri ∼ N(0,Ri)

▶ Filtering solution: p(xi | y1:i) = N(xi | mi|i ,Pi|i)

▶ Smoothing solution: p(xi | y1:T ) = N(xi | mi|T ,Pi|T )
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Three views into GPs
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Example: Exponential covariance function

▶ Exponential covariance function (Ornstein-Uhlenbeck process):

κ(t , t ′) = exp(−λ |t − t ′|)

▶ Spectral density function:

S(ω) =
2

λ+ ω2/λ

▶ Path representation: Stochastic differential equation (SDE)

df (t)
dt

= −λ f (t) + w(t),

or using the notation from before:
F = −λ, L = 1, Qc = 2, H = 1, and P∞ = 1.
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Examples of applicable GP priors
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Applicable GP priors

▶ The covariance function needs to be Markovian (or approximated as such).
▶ Covers many common stationary and non-stationary models.
▶ Sums of kernels: κ(t , t ′) = κ1(t , t ′) + κ2(t , t ′)

• Stacking of the state spaces
• State dimension: m = m1 + m2

▶ Product of kernels: κ(t , t ′) = κ1(t , t ′)κ2(t , t ′)
• Kronecker sum of the models
• State dimension: m = m1 m2
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Example: GP regression, O(n3)

The input–output pairs
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Example: GP regression, O(n3)

▶ Consider the GP regression problem with input–output training pairs
{(ti , yi)}ni=1:

f (t) ∼ GP(0, κ(t , t ′)),

yi = f (ti) + εi , εi ∼ N(0, σ2
n)

▶ The posterior mean and variance for an unseen test input t∗ is given by (see
previous lectures):

E[f∗] = k∗ (K + σ2
n I)−1 y,

V[f∗] = κ(t∗, t∗)− k∗ (K + σ2
n I)−1 kT

∗

▶ Note the inversion of the n × n matrix.
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Example: GP regression, O(n3)

Draw from the GP posterior with a Matérn prior
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Example: GP regression, O(n3)

Draws from the GP posterior
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Example: GP regression, O(n3)

Draws from the GP posterior
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Example: GP regression, O(n3)

The GP posterior marginals
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Example: GP regression, O(n3)

The GP posterior marginals
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Example: GP regression, O(n)
▶ The sequential solution (goes under the name ‘Kalman filter’) considers one

data point at a time, hence the linear time-scaling.
▶ Start from m0 = 0 and P0 = P∞ and for each data point iterate the following

steps.
▶ Kalman prediction:

mi|i−1 = Ai−1 mi−1|i−1,

Pi|i−1 = Ai−1 Pi−1|i−1 AT
i−1 + Qi−1.

▶ Kalman update:

vi = yi − H mi|i−1,

Si = Hi Pi|i−1 HT + σ2
n,

Ki = Pi|i−1 HT S−1
i ,

mi|i = mi|i−1 + Ki vi ,

Pi|i = Pi|i−1 − Ki Si KT
i .
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Example: GP regression, O(n)
▶ To condition all time-marginals on all data, run a backward sweep

(Rauch–Tung–Striebel smoother):

mi+1|i = Ai mi|i ,

Pi+1|i = Ai Pi|i AT
i + Qi ,

Gi = Pi|i AT
i P−1

i+1|i ,

mi|n = mi|i + Gi (mi+1|n −mi+1|i),

Pi|n = Pi|i + Gi (Pi+1|n − Pi+1|i)GT
i ,

▶ The marginal mean and variance can be recovered by:

E[fi ] = H mi|n and V[fi ] = H Pi|n HT

▶ The log marginal likelihood evaluated as a by-product of the Kalman update:

log p(y) = −1
2

n∑
i=1

log |2π Si |+ vT
i S−1

i vi
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Example: GP regression, O(n)

The state space representation enables efficient inference through Kalman filtering
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Example: Births in the US

▶ Number of births in the US
▶ Daily data between 1969–1988 (n = 7305)
▶ GP regression with a prior covariance function:

κ(t , t ′) = κ
ν=5/2
Mat. (t , t ′) + κ

ν=3/2
Mat. (t , t ′)

+ κ
year
Per. (t , t

′)κ
ν=3/2
Mat. (t , t ′) + κweek

Per. (t , t ′)κν=3/2
Mat. (t , t ′)

▶ Learn hyperparameters by optimizing the marginal likelihood

Explaining changes in number of births in the US
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Example: Aircraft accidents

▶ Commercial aircraft accidents 1919–2017
▶ Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
▶ Daily binning, n = 35,959
▶ GP prior with a covariance function:

κ(t , t ′) = κ
ν=3/2
Mat. (t , t ′) + κyear

Per. (t , t
′)κ

ν=3/2
Mat. (t , t ′) + κweek

Per. (t , t
′)κ

ν=3/2
Mat. (t , t ′)

▶ Learn hyperparameters by optimizing the marginal likelihood
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What if the data really is infinite?
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On-line inference by infinite time-horizon GPs

https://youtu.be/myCvUT3XGPc

Arno Solin · 59/90

https://youtu.be/myCvUT3XGPc


Spatio-temporal GPs

f (x) ∼ GP(0, κ(x,x′))

y | f ∼
∏

i

p(yi | f (xi))

f (r, t) ∼ GP(0, κ(r, t ; r′, t ′))

y | f ∼
∏

i

p(yi | f (ri , ti))
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Spatio-temporal Gaussian processes

GPs under the kernel formalism

f (x, t) ∼ GP(0, κ(x, t ;x′, t ′))
yi = f (xi , ti) + εi

Stochastic partial differential equation formalism

∂f(x, t)
∂t

= F f(x, t) +Lw(x, t)

yi = Hi f(x, t) + εi

Location
(x) Ti

m
e
(t
)

f
(x

,
t)

Covariance
k(x, t; x′, t′)

Location
(x) Ti

m
e
(t
)

f
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,
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The state at time t
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Spatio-temporal GP regression
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Spatio-temporal GP regression
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Spatio-temporal GP priors
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Gaussian processes ♥ SDEs

GPs under the kernel formalism

f (t) ∼ GP(0, κ(t , t ′))

y | f ∼
∏

i

p(yi | f (ti))

Stochastic differential equations

df(t) = F f(t) dt + L dβ(t)

yi ∼ p(yi | hTf(ti))

Flexible model
specification

Inference /
First-principles
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Different representations of GPs

▶ Gaussian processes have different representations:
• Covariance function • Spectral density • State space

▶ Temporal (single-input) Gaussian processes
⇐⇒ stochastic differential equations (SDEs)

▶ Conversions between the representations can
make model building easier

▶ (Exact) inference of the latent functions, can be done in
O(n) time and memory complexity by Kalman filtering
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⋆ Application examples:
Structure from temporal data
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Monocular depth estimation
▶ Eyes on opposite sides:

Large field-of-view vs. no stereo vision

▶ Monocular depth-sensing by head wobbling

▶ ‘Multi-view stereo’ (MVS) in computer vision

▶ “Structure from temporal data”

Source: Rooster Portrait on Wikimedia Commons
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Priors in larger models
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▶ Inputs: Frame pairs and relative camera
poses

▶ State-of-the-art in CV: Encoder–decoder
network for depth estimation

▶ Treat the encoder as a feature extractor,
and do GP regression in the latent space

▶ The GP prior encodes the similarity of
the camera views

Hou et al. (2019). Multi-view stereo by temporal nonparametric fusion. ICCV.
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Online inference on an iPad

https://youtu.be/iellGrlNW7k
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⋆ Application examples:
Generative heat dissipation
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Background: Diffusion models

▶ Diffusion models: Iterative denoising using a
NN→ generative model

▶ Benefits:
• Static training objective
• No restrictions on NN architecture
• Allows arbitrary depth
• Optimizes the likelihood of the data
→ tries to cover entire distribution
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Background: Diffusion models

▶ Deep latent-variable model with Markov structure

Generation (reverse):

pθ(uk−1 | uk ) ∼ N (µθ(uk , k),Σ)

pθ(u0:K ) = p(uK )
K∏

k=1

pθ(uk−1 | uk )

Inference (forward):

q(uk | uk−1) ∼ N (
√

1− βkuk−1, βk I)

q(u1:K | u0) =
K∏

k=1

q(uk | uk−1)
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Motivation for our approach

▶ Structure of images not directly reflected in
the diffusion generative process

▶ Pixels are next to each other

▶ Multi-scale behaviour

▶ Taking this multi-resolution structure into
account has lead to quantitative & qualitative
improvements in, e.g., GANs Karras et al., ICLR 2018.
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A scale-space view

▶ Scale-space: A way to represent images on
multiple scales

▶ Resolution decrease defined by the heat
equation

∂

∂t
u(x , y , t) = ∆u(x , y , t)

▶ Satisfies scale-space axioms:
Scale invariance, rotational symmetry, . . .
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∂

∂t
u(x, t) = ∆u(x, t)
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Generative inverse heat dissipation

Information melting forward process ∂u
∂t = ∆u

Generative inverse problem

←training data→

←generative sequence

Rissanen et al. (2023). Generative inverse heat dissipation. ICLR.
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Comparison of frameworks

Diffusion model

Information destroying forward process

Generative reverse process

▶ Increasing dimensionality
▶ Increasing entropy
▶ Decreasing smoothness
▶ Diffusion in pixel space

Inverse heat dissipation model

Information destroying forward process

Generative reverse process

▶ Decreasing dimensionality
▶ Decreasing entropy
▶ Increasing smoothness
▶ Diffusion in 2D plane of image

Arno Solin · 78/90



The forward process ∂u
∂t = ∆u

▶ Choose boundary conditions: u(x , y) derivatives zero at the edges
▶ The eigenbasis of the Laplace operator ∆ in a rectangle is the cosine basis
▶ Solve discretized version efficiently and accurately using the

discrete cosine transform (use the FFT)

u(t) = F(t) u(0) = V exp(Λt) V⊤u(0)

Pixel vector Forward
operator

Initial state Inverse
DCT

Diagonal
scaling

with freqs

DCT
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Model formulation

Diffusion model

Inverse heat dissipation model
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MNIST
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CIFAR-10
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AFHQ
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AFHQ: Same initialization
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Hierarchy
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Sample diversity
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{ Recap
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What did we go through now again?

Part I

Tools from
signal processing

Part II

SDEs
(continuous-time

models)

Part III

Temporal
Gaussian processes

⋆
Part IV

Application
examples
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What is sequential machine learning?

Sequential inference /
streaming

Continual learning Bayesian optimization /
active learning

▶ Timeseries

▶ Long/unbounded data

▶ Dynamical systems

▶ Recurrent NNs etc.

▶ “Life-long learning”

▶ Non-stationarity

▶ Model keeps changing

▶ Data keep changing

▶ How to pick points?

▶ Sequential decisions

▶ Connections to RL etc.
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What to take home?

▶ In ML, we already do well in the
large-data, gradient-based, static
learning regime.

▶ We struggle when data is scarce, the
model/data changes over time, and we
require reliability/trust.

▶ We (should) build on principled
foundations with tools that help us
develop the next generation of tools.
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