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It’s all about the tools in your toolbox
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OF THE FOUR DIMENSIONS T
COULD HAVE SPENT MY UIFE
BEING PUSHED INEXORABLY

FORWARD THROUGH, T GUESS
"TIME” ISN'T THE WJORST.
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https://xkcd.com/1524/

What is sequential machine learning?

Sequential inference / Continual learning Bayesian optimization /
streaming active learning

» Timeseries » ‘“Life-long learning” » How to pick points?

» Long/unbounded data » Non-stationarity » Sequential decisions
» Dynamical systems » Model keeps changing » Connections to RL etc.
» Recurrent NNs etc. » Data keep changing

Arno Solin - 4/90



Goals

Remind you of basic principles of direct links between signal processing
and machine learning

Provide an intuitive hands-on understanding of what stochastic differential
equations are all about

Show how these methods have real benefits in speeding up learning,
improving inference, and model building
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Motivation: Temporal models

© One-dimensional problems
(the data has a natural ordering)

© Spatio-temporal models
(something developing over time)

© Long/unbounded data
(sensor data streams, daily observations, efc.)
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Machine learning

Where does the sequential nature show?
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Tools for dealing with time-series

» Moment representation
Considering the statistical properties of the input
data jointly over time k(t,t)

» Spectral (Fourier) representation

Analyzing the frequency-space representation of the /_\/'\'-

problem/data

» State space (path) representation
Description of sample behaviour as a dynamic s
system over time e P
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Spectral (Fourier) representation

VAV VAV VA VAVEAVE VANV,

» Fourier transform F[-]:
F(w) = / F(x) exp(—i w'x) dx

» Analyzing properties of ‘systems’ (input—output mappings) by transfer

functions:
Y(s) _ LIy(1)](s)
X(s)  L[x(D)](s)’

where L[] is the Laplace transform

H(s) =
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Discrete-time state space models

OOOOOC
(D) () () (0 (9

Dynamics (prior): Xk = f(Xk—1,9qk), Ak ~ N(0,Qx),
Measurement (likelihood): Yk = h(Xk, rx), ri ~ N(0,Rg)

» A canonical state space model:

» The key to efficiency is the directed graph:
The Markov property.
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Kalman filtering and smoothing

» Closed-form solution to linear-Gaussian filtering problems

Xk = AXk_1 + Ok, qx ~ N(0,Qy),
Vi = Hxy + 1, r« ~N(0,Ry)

» Filtering solution: p(Xx | Y1.) = N(Xx | Mg, Pk(k)
» Smoothing solution: p(Xx | Y1.7) = N(Xx | My 7, Pk 1)
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Non-linear filtering

()

State Gaussian even if dynamics
and measurements non-linear

» Typically x4 is assumed Gaussian:

Xk = f(Xk_1, k), dx ~ N(0,Qy),
Yk = h(Xg, rg), re ~ N(0, Rg)

» Filtering solution: p(Xx | Y1.x) =~ N(Xx | Mg, Pk(x)
» Smoothing solution: p(Xx | Y1.7) = N(X | My 7, Pk 1)
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Probabilistic inertial-visual odometry
for occlusion-robust navigation (https://youtu.be/_ywmtVzxURk)


https://youtu.be/_ywmtVzxURk

SDEs _
(continuous-time models)
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Everything is more in continuous time.

This is also why we prefer modelling things in function space
(think of GPs, analyzing NNs, efc.).
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Textbooks
Applied
Stochastic
Differential
Equations

Simo Sirkki and

Arno Solin

B S. Sarkka and A. Solin (2019). Applied Stochastic Differential Equations.
Cambridge University Press. Cambridge, UK.

Book PDF and codes for replicating examples available online.
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Differential equations model how things change

» Ordinary differential equations (ODES)
(deterministic)

» Stochastic differential equations (SDEs)
(stochastic)
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What is a stochastic differential equation (SDE)?

» Consider an ordinary differential equation (ODE):

dx

» Then we add white noise to the right hand side:

dx
9 f(x,t) + L(x, t)w(t)

» f(x, 1) is the drift function and L(x, t) is the dispersion matrix (diffusion term)
» Now we have a stochastic differential equation (SDE)
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White noise

1. w(t) and w(f;) are independent if t; # &

2. t— w(t) is a Gaussian process with mean and
covariance: |

E[w(#)] = 0
Ejw(t)w ' (s)] = 4é(t—s)Q

» Qs the spectral density of the process
» The sample path t — w(t) is discontinuous almost everywhere

» White noise is unbounded and it takes arbitrarily
large positive and negative values at any finite interval
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What does a solution of an SDE look like?

Mean solution
95% quantiles

—— Realizations of the SDE

Displacement, x (1)

Time, ¢

Solution paths of a stochastic spring model

d?x(1) dx(t)
. a7 dt

+ 2 x(t) = w(t)
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SDEs as white noise—driven differential equations

Treating SDEs as white noise—driven differential equations has its limits

(;); = f(x, ) + L(x, t) w(?)
For linear equations the approach works
But this interpretation breaks down in the general setting:

e The chain rule of calculus starts giving wrong answers!
e With non-linear differential equations the behaviour becomes unexpected
e Trying to prove the existence of solutions becomes tricky

The source of the problems is the everywhere discontinuous white noise w(t)
So how should we really formulate SDEs?
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Equivalent integral equation

» We have a differential equation of the form

dx

Fiie =f(x, t) + L(x, t) w(?)

» Integrating the differential equation from ty to t gives:
t t
x(t) —x(fp) = | f(x(t),t)dt+ [ L(x(t),t)w(t)dt
fo Ji

» The first integral is just a Riemann/Lebesgue integral

» The second integral is the problematic one due to
the white noise (this is the interesting part!)
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Attempt 1: Riemann integral

In the Riemannian sense the integral would be defined as

t

t L(x(t), yw(t)dt = lim Z'— (t), t) W(te) (B — t),

0
where fo <ty < ... <ty =tand t; € [tk, txy1]
Upper and lower sums are defined as the selections of t; such that the
integrand L(x(}), t) w(#;) has its maximum and minimum values,
respectively
The Riemann integral exists if the upper and lower sums converge to the
same value

Because white noise is discontinuous everywhere,
the Riemann integral does not exist
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Attempt 2: Stieltjes integral [1/2]

» A Stieltjes integral is more general and allows for discontinuous integrands

» We can interpret the increment w(t) dt as increments of another process 3(t)

such that .

L(x(t), t) w(t)dt = tL(x(t),t)dB(t).

fo )

» It turns out that a suitable process for this purpose is Brownian motion. . .
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Brownian motion

1. Gaussian increments:
ABk ~ N(0,Q Aly),

where ABx = B(t1) — B(t) and
At =t — I

2. Non-overlapping increments are
independent

» Qs the diffusion matrix of the Brownian motion.
» Brownian motion ¢ — 3(t) has discontinuous derivative everywhere
» White noise can be considered the formal derivative of Brownian motion w(t) = dg(t)/dt
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Attempt 2: Stieltjes integral [2/2]

» Stieltjes integral is defined as a limit of the form
/ L(x(0): 098 = Jim SSLOKE). ) B(terr) — Bt

where fo <ty < ... < fpand t; € [t, k1]
» The limit #; should be independent of the position on the interval ; € [fx, k1]
» For integration with respect to Brownian motion this is not the case

I Thus, the Stieltjes integral definition does not work either

= Arno Solin - 27/90



Attempt 3: Lebesgue integral

» In a Lebesgue integral we could interpret 3(t) to define a ‘stochastic measure’
» Essentially, this will also lead to the definition

t

L(x(t),t)dB = lim Z'— ) 1) [B(t1) — B(t)],

where fo < ty < ... < tpand t; € [t, k1]
» Again, the limit should be independent of the choice t € [t, tk11]
» Also our ‘measure’ is not really a sensible measure

I The Lebesgue integral does not work either
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Attempt 4: It6 integral

» The solution to the problem is the It6 stochastic integral
» The idea is to fix the choice to ; = t, and define the integral as

t
L(x(t), 1)dB(t) = lim Z L(X(t), ) [B(ti1) — B(te)]
)
» This It6 stochastic integral turns out to be a sensible definition of the integral

» However, the resulting integral does not obey the computational rules of
ordinary calculus

» Instead of ordinary calculus we have It6 calculus
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Ité stochastic differential equations
» Consider the white noise—driven ODE

dx
dt

» This is actually defined as the It6 integral equation

=f(x,t) + L(x, t)w(t)

(1) — x(fo) = f(x(t dt+/L(x 1) da(1),

which should be true for arbitrary fy and t
» Which can be written (considering the limits ‘small’) as

\ dx = f(x, t)dt + L(x, {)d3 \

» This is the canonical form of an 1t6 SDE

[m]
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Connection with white noise-driven ODEs

» Let’s formally divide by dt, which gives

dx dg
Pl f(x,t) + L(x,t) or

» Thus we can interpret d3/dt as white noise w (not an entity as such, only the
formal derivative)

» Note that we cannot define more general equations

dx(t)
dt

= f(x(t), w(?), 1),

because we cannot re-interpret this as an 1t integral equation
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Non-linear SDEs

» There is no general solution method for non-linear SDEs
dx = f(x,t)dt + L(x, {)dg3

» However, numerical simulation of solution trajectories is usually possible
(e.g., with stochastic Runge—Kutta)

» The simplest alternative is the Euler—Maruyama method:
X(ter1) = X(t) + F(X(&), t) At + L(X(), t) ABk,

where AG, ~ N(0,Q Af)

= Arno Solin - 32/90



Solution concepts in SDEs

——Sample path of B(1)
Mean

w - - - Upper 95% quantile
- - Lower 95% quantile

» Path of a Brownian motion which is solution
to stochastic differential equation

dx -
‘Eiij —_— Vl/( t) 0 2 4 6 8 10

» Strong vs. weak solutions

» Evolution of the probability density of the
solution trajectories is given by the
Fokker—Planck—Kolmogorov PDE

B()
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N
. \
! \
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i
i
i
i
i
i
i
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B

10 —10
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Summary

Stochastic differential equations (SDE) can be seen as differential equations
with a stochastic driving force

SDEs are typical in physics, engineering, and finance applications

A heuristic white noise formulation has problems with the chain rule,
non-linearities, and solution existence

Instead, use the It6 stochastic integral (calculus)

Various solution concepts; in general, non-linear SDEs are tricky to solve
(good schemes for simulation exist though)
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Temporal Gaussian processes
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Gaussian processes

sl GPs are powerful tools for model
specification and inference.

s Meaningful uncertainty estimates
and a direct way to include
prior knowledge.

sl Do not require ad hoc tinkering
(plug & play).

GP classification with a Bernoulli likelihood
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GPs are associated with limitations

® Scaling to large data
A naive solution to dealing with the expanded Gram (covariance) matrix
requires O(n®) compute and O(n?) memory. Infeasible for n > 10,000.

® Dealing with non-conjugate likelihoods
For a Gaussian observation model the GP posterior is available in
closed-form. For non-conjugate likelihood models one has to resort to
approximate inference methods.

® Representational power
Gaussian processes are ideal for problems where it is easy to specify
meaningful priors. For applications such as image classification this is hard.
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Three views into (stationary) GPs

GP

Spectral
(Fourier)
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Kernel (moment) representation

f(t) ~ GP(u(t), x(t,t'))  GP prior
ylf~]] el f(t) likelihood
i

» Let’s focus on the GP prior only.

» A temporal Gaussian process (GP) is a random function f(t), such that joint
distribution of f(ty),. .., f(ty) is always Gaussian.

» Mean and covariance functions have the form:

p(t) = E[f(D)],
r(t, ) = E[(F(1) — p(D)(F(E) — n(t)].

» Convenient for model specification, but expanding the kernel to a covariance

matrix can be problematic (the notorious O(n®) scaling).
= Arno Solin - 39/90



Three views into (stationary) GPs

GP

Spectral
(Fourier)
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Spectral (Fourier) representation

» The Fourier transform of a function f(t) : R — R is

Flfl(iw) = /Rf(t) exp(—iw t)dt

» For a stationary GP, the covariance function can be written in terms of the
difference between two inputs:

Kt ) 2 k(t— t)

» Wiener—Khinchin: If f(t) is a stationary Gaussian process with covariance
function «(t) then its spectral density is S(w) = F[x].
» Spectral representation of a GP in terms of spectral density function

S(w) = E[f(iw) fT(—iw)]
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Three views into (stationary) GPs

GP

Spectral
(Fourier)
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State space (path) representation [1/3]

Path or state space representation as solution to a linear time-invariant (LTI)
stochastic differential equation (SDE):

df = Ffdt + Ldg,

where f = (f,df/dt,...) and 3(t) is a vector of Wiener processes.

Equivalently, but more informally
df(t)

g = Fi)+Lw().

where w(t) is white noise.

The model now consists of a drift matrix F € R™*™ | a diffusion matrix
L € R™*S| and the spectral density matrix of the white noise process
Q; € RS*S,

The scalar-valued GP can be recovered by f(t) = Hf({).
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State space (path) representation [2/3]

» The initial state is given by a stationary state f(0) ~ N(0, P,) which fulfills
FPy + P F +LQLT=0

» The covariance function at the stationary state can be recovered by

a(t t) = P exp((t' — t)F)T, V>t
0 | exp((f — t)F) Py <t

where exp(-) denotes the matrix exponential function.
» The spectral density function at the stationary state can be recovered by

S(w)=(F+iw) 'LQ,LT(F—iwl)™T

= Arno Solin - 44/90



State space (path) representation [3/3]

Similarly as the kernel has to be evaluated into covariance matrix for
computations, the SDE can be solved for discrete time points {#;}];.
The resulting model is a discrete state space model:

fi=A_1fi_1 +ai-1, q;~N(0,Q),
where f; = f(1;).
The discrete-time model matrices are given by:
A; = exp(F At),
At

Q; = exp(F (At — 7)) LQc LT exp(F (At —7))" dr,
0

where Af; = ti+1 —
If the model is stationary, Q; is given by

Q; = Po — AP A]
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Kalman filtering and smoothing

» Closed-form solution to linear-Gaussian filtering problems

Xj=Ai_1Xj_1 +0dj_1, q; ~ N(0,Q)),
yi=Hx;+r, ri ~N(0,R;)

» Filtering solution: p(x; | y1.;) = N(x; | mj;, Pj;)
» Smoothing solution: p(x; | y1.7) = N(x; | m;7,P; 1)
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Covariance function

Three views into GPs

1 T

Spectral density function

Input, ¢t
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Example: Exponential covariance function
» Exponential covariance function (Ornstein-Uhlenbeck process):
K(t, 1) = exp(=A |t = '])

» Spectral density function:

2
SW) =370
» Path representation: Stochastic differential equation (SDE)
di(t) _

o = M)+ w(t),

or using the notation from before:
F=-\L=1,Q=2,H=1,and P, = 1.
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Examples of applicable GP priors

Constant Linear Wiener process Wiener velocity

Exponential

aﬁy*.
NS
Y ’#\e‘\

2
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Applicable GP priors

» The covariance function needs to be Markovian (or approximated as such).
» Covers many common stationary and non-stationary models.
» Sums of kernels: x(t,t') = rk1(t, ') + ra(t, t)
e Stacking of the state spaces
e State dimension: m=my + mo
» Product of kernels: x(t,t') = r1(t, t') ko(t, t')
e Kronecker sum of the models
e State dimension: m= my mo
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Example: GP regression, O(n®)

The input—output pairs
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Example: GP regression, O(n®)
» Consider the GP regression problem with input—output training pairs
{(ti7yf)}§7:1:

f(t) ~ GP(0, s(t,t')),
Vi= f(t,') +¢&i, &~ N(O,Uﬁ)

» The posterior mean and variance for an unseen test input t, is given by (see
previous lectures):

E[f.] = k. (K+ Ur21 I)_1 Y,
V[f,] = w(t, t.) — ke (K+ 02D k!

» Note the inversion of the n x n matrix.
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Example: GP regression, O(n®)

+
+ T
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Draw from the GP posterior with a Matérn prior
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Example: GP regression, O(n®)

Draws from the GP posterior
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ion, O(n®)

GP regress

Example

Draws from the GP posterior
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Example: GP regression, O(n®)

The GP posterior marginals
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Example: GP regression, O(n®)

The GP posterior marginals
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Example: GP regression, O(n)
» The sequential solution (goes under the name ‘Kalman filter’) considers one
data point at a time, hence the linear time-scaling.

» Start from mg = 0 and Py = P, and for each data point iterate the following
steps.
» Kalman prediction:

mji_1 = A1 M_qj;_1,
Pjic1 = A1 Pi_yi Al + Q1.
» Kalman update:
vi=yi—Hmy;_4,
S; =H;P;_1H" + 2,
Ki=Py_1H'S; ",
m;; = m;;_y + K; Vv,
Pii=Pji_1 — KiSiK/.
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Example: GP regression, O(n)
» To condition all time-marginals on all data, run a backward sweep
(Rauch—Tung—Striebel smoother):

mj ;= Ajm;;,
Pi1ji = APy Al +Q,
G; =Py ATP
M, =My + Gi (Mjqp — Mg q)),
Pjin = Piji + Gj (Pis1jn — Pii1) G,
» The marginal mean and variance can be recovered by:
E[f]=H m;n and V[f]=H I:’i\n HT
» The log marginal likelihood evaluated as a by-product of the Kalman update:
n
log p(y) = —% > log|2w S|+ v/ S; v

i=1
= Arno Solin - 54/90



Example: GP regression, O(n)

The state space representation enables efficient inference through Kalman filtering
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Example: Births in the US

» Number of births in the US
» Daily data between 1969-1988 (n = 7305)
» GP regression with a prior covariance function:

Rt ) = k221 1) + w3 E)
+ RIS ) i B, ) + RSt ) i (1, )

» Learn hyperparameters by optimizing the marginal likelihood
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Explaining changes in number of births in the US
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Example: Aircraft accidents

Commercial aircraft accidents 1919-2017
Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
Daily binning, n = 35,959
GP prior with a covariance function:
A1) = wir *(1 ) R (48 s 2(8 ) + B (L) ey

Learn hyperparameters by optimizing the marginal likelihood

(t.t)
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Accident intensity, A(t)

FExamnle* Aircraft accidents

20

10

I

?920 1935 1950 1965 1980 1995 2010

Time (years)
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Month
JFMAMIJ JASOND

Example: Aircraft accidents

1920 1935 1950 1965 1980 1995 2010

Year
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What if the data really is infinite?

Class label

0 Predittions 7

L
Time
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On-line inference by infinite time-horizon GPs

https://youtu.be/myCvUT3XGPc
= Arno Solin - 59/90


https://youtu.be/myCvUT3XGPc

Spatio-temporal GPs

f(x) ~ GP(0, k(x,x"))
ylf~ HP(Y/ | £(x7))

£(r, t) ~ GP(0, x(r, £: ¥, 1))
y[f~ HP(Y:’ | £(ri, 1))
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Spatio-temporal Gaussian processes

GPs under the kernel formalism

f(x,t) ~ GP(0, k(x, t; X', t'))
Yi=f(X;, t;) + ¢

Stochastic partial differential equation formalism

of(x, t)
ot

=Fi(x, 1)+ Lw(xt)
Yi=Hit(xt) +¢;

Covariance
k(z, t;z’,t")

The state at time ¢
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Spatial dimension, x

Spatio-temporal GP regression

1 x X X T *
x x  x 5 O
8 5 x * x
x x X
L3 x|
x ¥ x x X, *
% * x x x 1
% * x X oxx
% x x x x X %
x £ Tx  x
x
" 8 8 * x
x
xX %% x
- x |
0 . x 0
% x  x x X xX X
xx x
x % < % % 4 x
x x
x x x x . x .
Ed x x -
L3 x
L3 x x x %
x x 8
* R 3
1 * x | x .~ X
~1 0 1

Temporal dimension, ¢

Estimate mean, E[f (¢, z)]
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Spatial dimension, x

Spatio-temporal GP regression

1

=]

Temporal dimension, ¢

Estimate mean, E[f (¢, z)]
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Spatio-temporal GP priors

Matérn (v = 1) Matérn (v = 2)

1
.

g 0
g
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0 1 2 3
Time, ¢ Time, ¢
Squared exponential Separable Matérn (v = 3/2)
1
. .
g g
g 0 g
g g
w0 w
-1
0 1 2 3
Time, ¢ Time, ¢
Separable exponential Separable periodic

1
.
o

g 0
g
12

-1

0 1 2 3

Time, ¢
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Gaussian processes ¥ SDEs

GPs under the kernel formalism
f(t) ~ GP(0, x(t, "))
ylf~]]pWil (1)

Flexible model Inference /
specification Stochastic differential equations First-principles

df(t) = F(t)dt + LdB(1)
yi ~ p(y; | hT(t))

= Arno Solin - 65/90



Different representations of GPs

Gaussian processes have different representations:
e Covariance function e Spectral density e State space

Temporal (single-input) Gaussian processes
<= stochastic differential equations (SDEs)

Conversions between the representations can
make model building easier

(Exact) inference of the latent functions, can be done in
O(n) time and memory complexity by Kalman filtering

Arno Solin - 66/90



Application examples:
Structure from temporal data
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Monocular depth estimation

» Eyes on opposite sides:
Large field-of-view vs. no stereo vision

» Monocular depth-sensing by head wobbling
» ‘Multi-view stereo’ (MVS) in computer vision

» “Structure from temporal data”

Source: Rooster Portrait on Wikimedia Commons
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Priors in larger models

Camera pose

» Inputs: Frame pairs and relative camera
poses

» State-of-the-art in CV: Encoder—decoder
network for depth estimation

Decoder  Latent GP

Disparity/
Depth

Hou et al. (2019). Multi-view stereo by temporal nonparametric fusion. ICCV.

o Arno Solin - 69/90



Online inference on an iPad

A

@100 % 53

Previous Frame Current Frame

Global translation:
-0.29m

+0.03m
-011m

Global orientation:
-35.8°

-18.1°
+1.4°

https://youtu.be/iellGriNW7k
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https://youtu.be/iellGrlNW7k

ok

Application examples:
Generative heat dissipation
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Background: Diffusion models

» Diffusion models: lterative denoising using a
NN — generative model

» Benefits:

Static training objective

No restrictions on NN architecture
Allows arbitrary depth

Optimizes the likelihood of the data
— tries to cover entire distribution

Denoising Diffusion Probabilistic Models + Ho, Jain, Abib-:'el « arxiv:2006.11239
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Background: Diffusion models

» Deep latent-variable model with Markov structure

po(Up—1 | ug)

_ _,@_,@_, _,

vy
q(ug |uk—1) ;;”f)
Generation (reverse): Inference (forward):
Po(Uk—1 | Uk) ~ N (pg(uk, k), X) q(uk | uk—1) ~ N (/1 — Brug_1, Bl)
K
Po(Uo.x) = p(Uk) ﬁ Po(Uk_1 | uk) q(uy. | Uo) H q(uk | uk_1)

k=1
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Motivation for our approach

Structure of images not directly reflected in G e et
the diffusion generative process = =

Pixels are next to each other

D Reals e E : Reals
1024x1024
Multi-scale behaviour ——
it —
I
o

Taking this multi-resolution structure into

account has lead to quantitative & qualitative

improvements in, e.g., GANS Karras et al., ICLR 2018.
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A scale-space view

» Scale-space: A way to represent images on
multiple scales

» Resolution decrease defined by the heat
equation

1o}
EU(XL}/? t) - AU(X7y7 t)

» Satisfies scale-space axioms:
Scale invariance, rotational symmetry, ...
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0
au(x, t) = Au(x, t)
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o Rissanen et al. (2023). Generative inverse heat dissipation. ICLR.

Generative inverse heat dissipation

Information melting forward process ¢ = Au

+training data—

<—generative sequence

Generative inverse problem
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Comparison of frameworks

Diffusion model

Information destroying forward process

o G

Generative reverse process

» Increasing dimensionality
» Increasing entropy

» Decreasing smoothness
» Diffusion in pixel space

Inverse heat dissipation model
Information destroying forward process
—_—  ——
Ly Yy

Generative reverse process
Y
N

» Decreasing dimensionality

» Decreasing entropy

» Increasing smoothness

» Diffusion in 2D plane of image

Arno Solin - 78/90



The forward process & = Au

» Choose boundary conditions: u(x, y) derivatives zero at the edges
» The eigenbasis of the Laplace operator A in a rectangle is the cosine basis

» Solve discretized version efficiently and accurately using the
discrete cosine transform (use the FFT)

TT
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Model formulation

Diffusion model

po(uk-—1 | uk)

@_,@_.

---

q(uk |up-1)

Inverse heat dissipation model

N I -
@ G

] q(ug | up) ' q(uk | uo) ] Q(Uk—l [ uo) :

Heat equation
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CIFAR-10
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AFHQ
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AFHQ: Same initialization
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Sample diversity

Initial state Generated samples
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Recap
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What did we go through now again?

© @ 0O

Part | Part Il Part i Part IV
Tools from SDEs Temporal Application
signal processing (continuous-time Gaussian processes examples
models)
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What is sequential machine learning?

Sequential inference / Continual learning Bayesian optimization /
streaming active learning

N
ﬁ?‘ ?* 0@

Task #1

L3

ference

g \ b % 4
» Timeseries » “Life-long learning” » How to pick points?
» Long/unbounded data » Non-stationarity » Sequential decisions
» Dynamical systems » Model keeps changing » Connections to RL efc.
» Recurrent NNs etc. » Data keep changing
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What to take home?

» In ML, we already do well in the
large-data, gradient-based, static
learning regime.

» We struggle when data is scarce, the
model/data changes over time, and we
require reliability/trust.

» We (should) build on principled
foundations with tools that help us
develop the next generation of tools.
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