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Introduction
Main results and some first few consequences

Fast CV-based estimation of further hyperparameters

FAQ

What is the talk about?

A fast approach to calculate cross-validation
residuals & their distribution in the framework of Gaussian Process models.

Do the results only apply to this framework? Yes and no. Linear (ridge)
regression, RKHS regularization, etc. enjoy this approach in full or in part.

What if I am not familar with GP models, cross-validation, and all that?
Take a deep breath, relax, we will briefly recall useful basics before take off!

And if I am already an expert of GPs. . . and all that? You might still enjoy
colorful block inversions and multiple-fold cross-validation on the Stromboli!
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What is cross-validation (CV)?

CV has developed as an important approach in model selection, see

S. Arlot, A. Celisse (2010).
A survey of cross-validation procedures for model selection
Statist. Surv. 4: 40-79.

and references therein. Several variations of CV (hold-out, leave-one-out,
leave-multiple-out, multiple-fold) have been use in various contexts.

The essence of CV is to leave part of the available data / training set away (a
“fold”), perform predictions at the left out “points” based on the remaining
data, and compare predicted versus left out responses.
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Fast CV-based estimation of further hyperparameters

Of what use is CV for GP modelling?

In GP modelling, cross-validation (CV) has been used for

diagnosing models without requiring external/validation data,

estimating hyperparameters (via criteria building on CV outputs),

and also, for guiding sequential design strategies

The most commonly implemented CV approach in GP modelling is
doubtlessly the so-called Leave-One-Out Cross-Validation (LOO-CV).
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LOO-CV based on regularly spaced points
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Gaussian Process model(s)

Let D be a set.

A real-valued Gaussian Process ξ = (ξ(x))x∈D indexed by D is a collection of
random variables over a common probability space such that, for any n ∈ N
and x1, . . . , xn ∈ D, (ξ(x1), . . . , ξ(xn)) has a Gaussian (joint) distribution.

Considered observation model

For n ∈ N and x1, . . . , xn considered as fixed, one observes for 1 ≤ i ≤ n

Zi = ξ(xi) + εi

=

p∑
j=1

βj fj(xi) + η(xi) + εi

where η is a centred real-valued GP with covariance kernel k , and
ε = (ε1, . . . , εn) ∼ N (0,Σε) independently of η.
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Considered (BLU) predictors in a nutshell
In linear prediction (with β unknown, or a null trend), a predictor of the form

ξ̂(x) = λ(x)⊤Z (x ∈ D)

is sought, where Z = (Z1, . . . ,Zn)
⊤.

The BLUP at x is obtained by determining λ(x) so as to minimize

Var[ξ(x)− ξ̂(x)] = k(x, x) + λ(x)⊤(K +Σε)λ(x)− 2k(x)⊤Kλ(x)

s.t. F⊤λ(x) = f(x), where

K = (k(xi , xj))i,j∈{1,...,n},

k(x) = (k(x, xi))i∈{1,...,n},

F = (fj(xi))1≤i≤n,1≤j≤p ∈ Rn×p,

and f(x) = (f1(x), . . . , fp(x))⊤ ∈ Rp.
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Universal Kriging equations (β unknown)

Assuming that K +Σε and Iβ = F⊤(K +Σε)
−1F are invertible, solving for

λ(x) delivers the Universal Kriging predictor, that can ultimately be written as

ξ̂(x) = f(x)⊤β̂ + k(x)⊤(K +Σε)
−1(Z − F β̂),

where β̂ = I−1
β F⊤(K +Σε)

−1Z.

Furthermore the residual covariance writes, for arbitrary x, x′ ∈ D:

Cov[ξ(x)− ξ̂(x), ξ(x′)− ξ̂(x′)] = k(x, x′)− k(x)⊤(K +Σε)
−1k(x′)

+(f(x)− F⊤(K +Σε)
−1k(x))⊤I−1

β (f(x′)− F⊤(K +Σε)
−1k(x′)).

In particular, Var[ξ(x)− ξ̂(x)] gives the prediction variance.

NB: GLS is a special case (k ≡ 0). Simple Kriging assumes a known trend.
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More on CV notation and the settings of the example
Throughout the presentation, we denote by i a non-void vector of ordered
indices from {1, . . . , n} and by S the set of all such vectors.

We further denote by Z[i] the corresponding subvector extracted from Z and
by Ẑ (−i)[i] the GP prediction of Z[i] based on the remaining components of Z.

Ei = Z[i]− Ẑ (−i)[i] denotes the corresponding (CV) residual.

In LOO-CV, the considered index vectors are the singletons i ∈ {1, . . . , n}.

In the previous example, the GP model is applied to a deterministic function
and there is no observation noise (Σε = 0).

The trend is an estimated constant (Ordinary Kriging). The kernel is of the
form k(x, x′) = σ2r(x − x′) with r a Matérn correlation function ν = 5/2.
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by Ẑ (−i)[i] the GP prediction of Z[i] based on the remaining components of Z.
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Another example: Gravimetric inversion on Stromboli

Broader goals: reconstruct the mass density inside Stromboli from
gravimetric measurements on its surface. We use a GP model under integral
observations (collaboration with Prof. Niklas Linde, University of Lausanne).
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In Simple Kriging settings, Bachoc presented several results (building upon
an approach pioneered by Dubrule in various settings) highlighting the
instrumental role of Q = Σ−1 in calculating LOO-CV residuals.

F. Bachoc (2013).

Cross validation and maximum likelihood estimation of hyperparameters of gaussian processes with model
misspecification.
Computational Statistics and Data Analysis, 66:55-69.

O. Dubrule (1983).

Cross validation of kriging in a unique neighborhood.
Journal of the International Association of Mathematical Geology 15, 687-699.

The LOO residuals E = (E1, . . . ,En)
⊤ can be written in compact form:

E = diag((Q[1], . . . ,Q[n])−1)QZ.

In turn, this formulas also provide a means efficiently calculate standardized
residuals (commonly used within qq-plots for diagnostics) via QZ.

In the context where Σ = K = σ2R, it has been used to estimate σ2 by
setting ||QZ||2 = n, leading to σ̂2

LOO = 1
n Z⊤R−1(diag(R−1))−1R−1Z.
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Computational speed-ups of fast versus “naive” LOO
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Figure: Speed-up (ratio between times required to run the naive and fast methods)
measured for LOO on 10 regular designs, with 100 to 1000 points equidistributed on
[0, 1], where each speed-up measure is repeated 50 times.
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LOO- vs MF-CV when the design has clustered points
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Fast CV-based estimation of further hyperparameters

A few challenges and outlined contributions

The previously presented efficient LOO formula have been generalized to CV
with arbitrary folds (both in Simple and Universal Kriging frameworks), see

D. Ginsbourger and C. Schärer (2023+).

Fast calculation of Gaussian Process multiple-fold cross-validation residuals and their covariances.
arXiv:2101.03108,

In the next section we will review some of the main results of this paper.

Finally we will show how they can be applied on an inverse problem context
from volcano geophysics, and leveraged to investigate the influence of fold
design on parameter estimation by minimization of the norm of CV residuals.
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Fast calculation of Gaussian Process multiple-fold cross-validation residuals and their covariances.
arXiv:2101.03108,

In the next section we will review some of the main results of this paper.

Finally we will show how they can be applied on an inverse problem context
from volcano geophysics, and leveraged to investigate the influence of fold
design on parameter estimation by minimization of the norm of CV residuals.

david.ginsbourger@unibe.ch On GP multiple-fold cross-validation 16 / 54



Introduction
Main results and some first few consequences

Fast CV-based estimation of further hyperparameters

Fast multiple-fold CV
Some consequences

Outline

1 Introduction

2 Main results and some first few consequences
Fast multiple-fold CV
Some consequences

3 Fast CV-based estimation of further hyperparameters

david.ginsbourger@unibe.ch On GP multiple-fold cross-validation 17 / 54



Introduction
Main results and some first few consequences

Fast CV-based estimation of further hyperparameters

Fast multiple-fold CV
Some consequences

Theorem

For any i ∈ S,the Simple Kriging residual Ei = Z[i]− Ẑ(−i)[i] obtained when
predicting at locations indexed by i based on observations at −i writes

Ei = (Q[i])−1(QZ)[i].

Consequently, for any q > 1 and i1, . . . , iq ∈ S, the Eij (1 ≤ j ≤ q) are jointly
Gaussian, centred, and with covariance structure given by

Cov(Ei,Ej) = (Q[i])−1Q[i, j](Q[j])−1 (i, j ∈ S).

In particular, for the case of an ensemble of folds I = (i1, . . . , iq) such that
concatenation of i1, . . . , iq gives (1, . . . , n), then

Cov(EI) = BIQBI,

where BI = blockdiag
(
(Q[i1])−1, . . . , (Q[iq])−1) .
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Block inversion in colours

Theorem (Block matrix inversion via Schur complement: a classic!)

Let M =

(
A B
C D

)
be a real matrix with A,B,C,D of conformable dimensions.

Assuming that D and A − BD−1C are invertible, then so is M with

M−1 =

(
(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
.

NB: if A and D − CA−1B are invertible, we also have

M−1 =

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

Identifying blocks give useful formulas!
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Revisiting (Simple) Kriging in “transductive” settings

Before proving the theorem, let us revisit Simple Kriging when observation
and prediction points are all from x1, . . . , xn ∈ D.

WLOG, let io = (1, . . . ,m), jo = (m + 1, . . . , n) where m ≤ n − 1.

Here we want to predict Z[i0] = (Z1, . . . ,Zm)
⊤ from Z[j0] = (Zm+1, . . . ,Zn)

⊤.

The corresponding (Simple) Kriging predictor is known to be given by

Ẑ(−i0)[i0] = Cov(Z[i0],Z[j0]) Cov(Z[j0])−1Z[j0]

with associated residual covariance

Cov(Z[i0]−Ẑ(−i0)[i0])

= Cov(Z[i0])− Cov(Z[i0],Z[j0]) Cov(Z[j0])−1 Cov(Z[j0],Z[i0])
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Revisiting (Simple) Kriging in transductive settings

Denoting Q = Σ−1 = (K +Σε)
−1, we have by block matrix inversion

Q[io] = (Σ[io]− Σ[io, jo]Σ[jo]−1Σ[jo, io])−1

Q =

(
Σ−1[io] −Σ−1[io]Σ[io, jo]Σ[jo]−1

−Σ[jo]−1Σ[jo, io]Σ−1[io] not represented

)
,

whereof

Cov
(

Z[i0]− Ẑ(−i0)[i0]
)
= Q[io]−1

and
Ẑ(−i0)[i0] = −(Q[io])−1Q[io, jo]Zjo

In other words, both quantities can be calculated based on blocks of Q.
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Keys towards the proof (1/2)

The proof relies on block matrix inversion results.

We have indeed for arbitrary indices such as the inverses involved do exist
(See. e.g., Horn and Johnson),

M−1[i] = (M[i]− M[i,−i]M[−i]−1M[−i, i])−1

and, more generally,

M−1[i, j] = −(M[i]− M[i, j]M[−i]−1M[j, i])−1M[i, j]M[j]−1

= −M[j]−1M[j, i](M[i]− M[i, j]M[j]−1M[j, i])−1.

From there one gets that Ei = (Q[i])−1(QZ)[i].
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Keys towards the proof (2/2)

In order to highlight the joint Gaussianity and the covariance structure at
once, let us further define

∆i = In[i, (1, . . . , n)]

to be the #i × n “subsetting” matrix.

We then have that for any i ∈ S,

Ei = (Q[i])−1∆iQZ,

so that concatenating any finite number q ≥ 1 of random vectors Ei1 , . . . ,Eiq
leads to a Gaussian vector by left multiplication of Z by a deterministic matrix.

The special case presented at the end of the theorem corresponds to a
situation where the stacked ∆i’s form the identity matrix (with size n × n).
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A remark following the theorem

For arbitary I (without imposing ordering between ij ’s or that they form a
partition) we obtain a similar result yet without the above simplification, i.e.

Cov(EI) = DI∆IQ∆T
IBI with ∆I = (∆⊤

i1 , . . . ,∆
⊤
iq )

⊤.

N.B.: an extreme case would be to consider all possible non-empty subsets
of {1, . . . , n}, leading to q = 2n − 1 and n2n−1 lines for ∆I.
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About speed-ups
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Figure: Speed-up (ratio between times required to run the naive and fast methods)
measured for q-fold CV, where q decreases from 1024 to 2 and 50 seeds are used that
affect here both model fitting and the folds.
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Back to the first example
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About the correlation between LOO residuals

We are here in the case where q = n and the ij ’s are set to (j) (1 ≤ j ≤ n).

One recovers fast leave-one-out cross-validation formulae, and we obtain as
a by-product the covariance matrix of leave-one-out residuals

diag(Q[1]−1, . . . ,Q[n]−1) Q diag(Q[1]−1, . . . ,Q[n]−1)

leading to the following formula for the correlation matrix of LOO residuals

diag(Q[1]−1/2, . . . ,Q[n]−1/2) Q diag(Q[1]−1/2, . . . ,Q[n]−1/2)
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Correlation of LOO-CV residuals on the first example
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Some consequence of CV residuals being correlated

It is not appropriate to consider “standardized” LOO (or further CV) residuals
separately when building diagnostics such as QQ-plots

⇒ A decorrelating operation seems in order!

Assuming multiple-fold settings from the second part of the main theorem,
any matrix A ∈ Rn×n such that ABIQBIA⊤ = In does the job.

More specifically, with AI = Σ1/2D−1
I , one gets indeed

AIEI = Σ−1/2Z ∼ N (0, In) .

Hence the hypothesis of a correct model can be questioned using standard
means relying on such a pivotal multivariate Gaussian distributed quantity.
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Standardized vs transformed CV residuals (example)

Back to our first example, we obtain the following comparison between
merely “standardized” against properly “transformed” LOO residuals:
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About the estimation of σ2 (1/2)

The leave-one-out-based estimator of σ2 investigated in Bachoc 2013 reads

σ̂2
LOO =

1
n

ZR−1(diag(R−1))−1R−1Z,

and originates from the idea (traced back by Bachoc to Cressie 1993) that

C(1)
LOO(σ

2) =
1
n

n∑
i=1

(Ei)
2

Var(Ei)
,

should take a value close to one.
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About the estimation of σ2 (2/2)

Yet, in order to correct for the covariance between LOO residuals, one may
revise the criterion C(1)

LOO(σ
2) into

C(1)

L̃OO
(σ2) =

1
n

n∑
i=1

n∑
j=1

(Z[i]− Ẑ(−i)[i])(BQB)ij(Z[j]− Ẑ(−j)[j])

=
1

nσ2 E⊤ diag(R−1)R diag(R−1)E

=
1

nσ2 Z⊤R−1Z,

so that setting this modified criterion to 1 would plainly result in

σ̂2
L̃OO

=
1
n

ZR−1Z = σ̂2
MLE.
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On MF-CV-estimation of further kernel parameters

We now focus on by-products of fast multiple-fold CV for the estimation of θ
and tackle in particular the following research questions/challenges:

Closed-form formula for the ℓ2 norm2 of CV errors in function of Rθ

Application to a Bayesian inverse problem from volcano geophysics

Numerical study of resulting θ estimators depending on fold design
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Fast square norm of MFCV residuals in closed form

We now consider the fast/closed-form calculation of a multiple-fold CV
criterion for θ estimation, namely

CCV(θ; I) =

q∑
j=1

||Z[ij ]− ̂Z(−ij )[ij ](θ)||2 =

q∑
j=1

||Eij (θ)||
2 = ||EI(θ)||2.

Building up upon the main theorem, we obtain (case Σ = σ2R) that

CCV(θ; I) = Z⊤R−1
θ blockdiag

(
(R−1

θ [i1])−2, . . . , (R−1
θ [iq])−2

)
R−1

θ Z.

Note that this criterion derives from a rather basic scoring approach. More
general approaches have been considered (not covered here).
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Figure: Contaminant localization test function designed by summing misfits between
given concentrations at monitoring wells and corresponding simulation results when
varying the candidate source localization.
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Figure: Gaussian Process prediction mean and standard deviation on the contaminant
localization test function with 25 clover-shape 5-element observation clusters and
covariance parameters estimated by MLE.
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Figure: Left: absolute prediction errors (heatmap) versus CV residuals (disks of radii
proportional to absolute residuals, blue for LOO and green for MFCV). Right: log
square norm of LOO residuals (top), of MFCV residuals (center), and of reconstruction
error (bottom) as a function of the range hyperparameter.
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Cross-validating gravimetry on the Stromboli

We will now present an application test case where multiple-fold CV is used
for the estimation of a correlation parameter θ of the input field on a Bayesian
inverse problem where observations are gravimetry measurements.

Joint work with Athénaı̈s Gautier and Cédric Travelletti.

For more detail about the underlying inverse problem and the GP model, see

C. Travelletti, D. Ginsbourger, and N. Linde (2023)
Uncertainty Quantification and Experimental Design for Large-Scale Linear
Inverse Problems under Gaussian Process Priors
SIAM/ASA Journal on Uncertainty Quantification 11(1)
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Gravimetric inversion on Stromboli: first simulation

Figure: Simulated gravimetry measurements (generated with θo = 450)
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CV on the first simulation example: clustered folds

Figure: L2 norm of CV residuals for various fold designs resulting from clustering.
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CV on the first simulation example: random folds

Figure: L2 norm of CV residuals for various fold designs resulting from randomization.
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Simulation study results (clustered folds)

Figure: L2 norm of residuals for 500 simulations (50 curves displayed), for various fold
designs resulting from clustering.
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Simulation study results (randomized folds)

Figure: L2 norm of residuals for 500 simulations (50 curves displayed), for various fold
designs resulting from randomization.
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Bias

Folds θ0 = 150 θ0 = 450 θ0 = 750
Clusters Random Clusters Random Clusters Random

2 4.28 7.4 49.18 11.72 55.64 -91.8
4 2.66 9.5 55.16 -25.92 35.04 -174.24
5 1.52 13 42.8 -44 23.64 -182.68
8 3.16 6.56 46.02 -57.3 36.1 -204.42

15 3.96 9.4 37.36 -61.9 7.2 -213.48
25 4.6 10.54 46.98 -65.82 -7.18 -213.9
36 5.42 9.2 4.2 -65.96 -61.08 -219.54
54 5.44 10.1 5.02 -62.82 -94.74 -218.66
60 4.54 11.48 -26.36 -64.4 -152.26 -223.1
90 5 8.32 -28.58 -64.94 -166.64 -222.12

108 5.26 10.68 -41.14 -66.1 -180.1 -221.52
180 4.34 9.36 -53.46 -66.26 -198.22 -222.78
271 4.96 10.28 -76.7 -67.18 -245.44 -222.3

LOO 9.98 -66.9 -222.9
MLE 5.36 23.92 41.56
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Estimation standard deviation

Folds θ0 = 150 θ0 = 450 θ0 = 750
Clusters Random Clusters Random Clusters Random

2 59.59 38.6 178.1 173.82 290.13 202.37
4 39.05 42.2 184.26 122.75 243.53 124.41
5 35.7 46.61 172.35 98 232.24 113.03
8 34.43 39.25 191.34 86.28 245.44 104.24

15 27.1 35.92 185.26 76.64 250.37 96.91
25 25.24 39.45 217.25 80.84 259.84 100.6
36 23.19 37.16 143.57 78.02 214.31 97.3
54 21.8 38.76 152.64 85.42 205.78 97.6
60 21.45 45.26 93.59 82.8 120.9 97
90 21.53 36.86 106.32 81.42 118.77 97.24

108 23.01 40.74 79.38 79.46 92.1 97.54
180 22.18 36.84 66.26 79.48 86.71 96.35
271 26.25 39.58 56.96 79.32 69.44 96.39

LOO 38.84 79.89 97.1
MLE 5.49 11.25 19.25
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Root mean square error

Folds θ0 = 150 θ0 = 450 θ0 = 750
Clusters Random Clusters Random Clusters Random

2 59.74 39.3 184.76 174.21 295.42 222.22
4 39.14 43.25 192.34 125.46 246.03 214.1
5 35.73 48.39 177.58 107.42 233.44 214.82
8 34.57 39.79 196.8 103.58 248.08 229.46

15 27.38 37.13 188.99 98.51 250.47 234.45
25 25.65 40.84 222.27 104.25 259.94 236.38
36 23.82 38.28 143.63 102.17 222.84 240.13
54 22.47 40.06 152.72 106.04 226.54 239.45
60 21.93 46.69 97.23 104.9 194.42 243.28
90 22.1 37.78 110.1 104.15 204.63 242.47

108 23.61 42.12 89.41 103.36 202.28 242.04
180 22.6 38.01 85.13 103.48 216.36 242.72
271 26.72 40.89 95.54 103.95 255.07 242.3

LOO 40.1 104.2 243.13
MLE 7.67 26.43 45.8
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Ongoing work and selected perspectives

CV-based selection of trends in Bayesian Inversion (Stromboli!)
→ See Cédric Travelletti’s PhD thesis (2023)

Investigating further scoring rules in the context of MFCV

Formalizing and developing ”fold design” (criteria, algorithms, etc.)

Exploring generalizations beyond the considered classes of models.

Thank you very much for your attention!
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Cross-validation for correlated data.
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Back to first example, with a trend (UK)
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Revisiting (Universal) Kriging in transductive settings
In Universal Kriging, similar results do apply, yet by augmenting Σ with the
design matrix F in the sense of the following matrix M:

M =

(
Σ F

F⊤ 0

)
,

Denoting now by Ẑ(−i0)[i0] the Universal Kriging predictor of Z[io] based on
Z[jo], one can then show that

Cov
(

Z[i0]− Ẑ(−i0)[i0]
)
= M−1[io]−1

and
Ẑ(−i0)[i0] = −(M−1[io])−1M−1[io, jo]Zjo

This time, both quantities can be calculated based on blocks of M−1. Note
that M−1[io]−1 = Σ−1 − Σ−1F (FΣ−1F⊤)−1F⊤Σ−1.
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Cross-validation residuals from precision matrices

Denote Eio = Z[i0]− Ẑ(−i0)[i0] (either way).

Simple Kriging case (Q = Σ−1)

Eio = (Q[io])−1(QZ)[io]

Cov (Eio ) = (Q[io])−1

Universal Kriging case (Q̃ = Q − QF (FQF⊤)F⊤Q)

Eio = (Q̃[io])−1(Q̃Z)[io]

Cov (Eio ) = (Q̃[io])−1
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Theorem

For any i ∈ S,the Universal Kriging residual Ei = Z[i]− Ẑ(−i)[i] obtained when
predicting at locations indexed by i based on observations at −i writes

Ei = (Q̃[i])−1(Q̃Z)[i].

Consequently, for any q > 1 and i1, . . . , iq ∈ S, the Eij (1 ≤ j ≤ q) are jointly
Gaussian, centred, and with covariance structure given by

Cov(Ei,Ej) = (Q̃[i])−1Q̃[i, j](Q̃[j])−1 (i, j ∈ S).

In particular, for the case of an ensemble of folds I = (i1, . . . , iq) such that
concatenation of i1, . . . , iq gives (1, . . . , n), then

Cov(EI) = B̃IQ̃B̃I,

where B̃I = blockdiag
(
(Q̃[i1])−1, . . . , (Q̃[iq])−1

)
.
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