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Diffusion Models and SDEs
Lecture 1:

A very fast paced introduction to the foundations / notation.



Probability Space

• Sample Space

(Ω,Σ,P)
• Event  Space e.g

• Probability Measure

2
{0,1}

/ Sigma Algebra: is a algebra/system of sets 
that are “closed” under countable # of 
operations                     and ∪,∩, \Ω

Ω = {0, 1} Ω = Re.g or

P(∪i∈IAi) =
∑

i∈I

P(Ai)

Ai ∩Aj = ∅, i #= j , ∃f : I ←→ N

Ω, ∅ ∈ Σ ⊆ 2
Ω

P(Ω) = 1, P (A) ≥ 0
Quick Probability Recap



Probability Space

• Sample Space

(Ω,B(Ω),P)
• Event  Space e.g

• Probability Measure

2
{0,1}

The Borel-sigma algebra is the smallest 
sigma algebra containing the event space 
(i.e. intersect all possible sigma algebra 
containing Omega).

Ω = {0, 1} Ω = Re.g or

P(∪i∈IAi) =
∑

i∈I

P(Ai)

Ai ∩Aj = ∅, i #= j , ∃f : I ←→ N

P(Ω) = 1, P (A) ≥ 0
Quick Probability Recap



Filtered Probability Space

• Think of a filtration  as the sample space of a time series, that is 
a series of sample spaces:

(Ω,B(Ω),F ,P)

F = {Ft}t∈[0,T ]

s ≤ t =⇒ Fs ⊆ Ft

Quick Probability Recap



Stochastic Process

• Collection of Random Variables  (Measurable Maps) !

(

C([0, T ];Rd),B
(

C([0, T ];Rd)
)

,F ,P
)

{Xt}t∈[0,T ]

A ∈ Fs =⇒ X
−1(A) ∈ B(Rd)

Xt(ω) : [0, T ]× Ω → R
d

Quick Probability Recap



Quick Probability Recap
Brownian Motion

• Brownian motion is a Gaussian Process, and one of the simplest Stochastic 
Processes:
• Pinned Origin: 
• Independent increments
•
• is continuous in    (almost surely)

W0 = 0
s, t > 0, Wt+s −Wt ⊥⊥ Wt

Wt+s −Wt ∼ N (0, s)
Wt t

W ∼ GP(0,min(s, t))



Quick Probability Recap
Lebesgue Integral ∫

A

dλ = λ(A)
∫
Ω

IA(x)dλ = λ(A)

∫
Ω

n∑
i=1

aiIAi
(x)dλ =

n∑
i=1

aiλ(Ai)

∫

A

fdλ = sup

{

∫

sdλ : 0 ≤ s ≤ f, s =
n
∑

i=1

αiIAi
(x)

}



We can replace lambda with a probability distribution/measure yielding the familiar 
expectation:

Lebesgue-Stjelties Integral

∫
A

f(x)dλ(x) =

∫
A

f(x)dx =

∫
A

f(x)λ(dx)

∫

A

fdλ = sup

{

∫

sdλ : 0 ≤ s ≤ f, s =
n
∑

i=1

αiIAi
(x)

}

∫
A

f(x)dP (x) = EP [f(X)]

Quick Probability Recap



Radon Nikodym Theorem – Change of Measure

µ(A) =

∫
A

dµ

dλ
(x)dλ(x)

µ << λ := λ(A) = 0 =⇒ µ(A) = 0

∫
A

f(x)dµ(x) =

∫
A

f(x)
dµ

dλ
(x)dλ(x)

Quick Probability Recap



P(A) =

∫
A

dP

dλ
(x)dλ(x)P << λ

P(A) =

∫
A

dP

dλ
(x)dλ(x) =

∫
A

dP

dλ
(x)dx

Now For sake of simplicity assume Reimann Integrability

dP

dλ
(x) = Probability Density Function !

Radon Nikodym Theorem – Probaility Density Function
Quick Probability Recap



P << Q

∫
Ω

f(x)dP(x) =

∫
Ω

f(x)
dP

dQ
(x)dQ(x)

EP[f(X)] = EQ

[

f(X)
dP

dQ
(X)

]

EP[f(X)] = EQ

[

f(X)
p(X)

q(X)

]

Radon Nikodym Theorem – Importance Sampling
Quick Probability Recap



lim
n→∞

P (|X −Xn| > ε) = 0 P

(

lim
n→∞

Xn = X

)

= 1

lim
n→∞

E [|X −Xn|
p] = 0 LawX = lim

n→∞

LawXn

=
⇒

=⇒

=

⇒

=⇒

=
⇒

Modes of equality/convergence of r.v.s.
Quick Probability Recap



X0 ∼ π,

εn ∼ N (0, γI)

Xn+1 = Xn + f(Xn, n)δt+
√
δtεn,

SDEs
Heuristic 1 – Discrete Time Markov Chain (Euler Maruyama Discretisation)



• Consider the ODE + Noise

X0 ∼ π,

dXt

dt
= f(Xt, t) + γw(t),

w(·) ∼ GP(0, Is=t)

SDEs
Heuristic 2 – Langevin Dynamics and White Noise



• Can think of this as a Reimann 
integral with convergence 
asserted in the              senseYt =

∫
t

0

Xsds
L

p(P)

Zt =

∫
t

0

YsdXs

• Now integrating against/wrt to 
random variable. Not so simple to 
define. Reimann conditions fail

SDEs
Stochastic Integrals - Types



E

[

n
∑

k=1

Wtk(Wtk+1
−Wtk)

]

= 0

E

[

n
∑

k=1

Wtk+1
(Wtk+1

−Wtk)

]

= t

• Where you evaluate the integrand (within the grid) changes the result, thus 
violating the conditions required to be Reimann integrable (remember upper 
and lower Darboux sums must much)

SDEs
Stochastic Integrals – Counter Example



• First partition the grid [0,t] 

• Now we make the following assumption

• Then the Ito Integral is defined as:

SDEs
Stochastic Integrals - Definition

lim
n→∞

E

[
∫

t

0
|Yt − Y

(n)
t

|2ds

]

= 0 s.t.

tk+1 − tk =

t

N

∫ t

0
YsdWs

L
2(P)
= lim

n→∞

n∑
k=1

Ytk(Wtk+1
−Wtk)

Y
(n)(t) =

n∑

k=1

YtkIt∈[tk,tk+1)(t)

≈
N
(0,

ds
)



Conditional Expectation - Martingale

E [Xt|Fs] = Xs

=
⇒

E [Xt|Xs] = E [Xt|σ(Xs)] = Xs

Martingales



The optimal predictor of X as a function of Y (Hilbert projection)

Is given by the conditional expectation:

Conditional Expectation, MSE
Quick Aside (Useful Later)

∪,∩, \Ω

argmin
f−is measurable

E (X − f(Y ))2

f∗(Y ) = E[X|Y ]



The optimal predictor of the future as a function of the past in a 
martingale:

Is given by past itself:

Martingales
Martingales – Intuitive Intro

∪,∩, \Ω

argmin
f−is measurable

E (Xt+δ − f(Xt))
2

f∗(Xt) = E[Xt+δ|Xt] = Xt



E

[
∫

t

0

XτdWτ

]

= E

[

E

[

∫

t

0

XτdWτ

∣

∣

∣

∣

∣

F0

]]

= E

[
∫ 0

0

XτdWτ

]

= 0

Martingales
Stochastic Integrals - Martingales



• Assumptions (Lipchitz + Linear Growth):

• Then we have existence and uniqueness of (in            ):

|µ(x, t)− µ(y, s)|+ |σ(x, t)− σ(y, s)| ≤ L(|x− y|+ |t− s|)

|µ(x, t)|+ |σ(x, t)| ≤ C(1 + |x|)

X0 ∼ π

Xt = X0 +

∫
t

0

µ(Xs, s)ds+

∫
t

0

σ(Xs, s)dWs

L
p(P)

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

SDEs
Formal Definition - Stochastic Piccard Lindeloff Theorem



Diffusion Models and SDEs
Lecture 2:

SDE Properties, Linear SDEs, Time Reversal and the h-transform



SDE Properties
Quadratic Variation of Brownian Motion

∪,∩, \Ω

lim
n→∞

E

(

t−

n
∑

i=1

(Wti+1
−Wti)

2

)2

= 0



SDE Properties
Quadratic Variation of Brownian Motion

∪,∩, \Ω

dWt

dWt dt

dt

dt

0 0

0

lim
n→∞

E

(

t−

n
∑

i=1

(Wti+1
−Wti)

2

)2

= 0



SDE Properties
Ito’s Lemma

∪,∩, \Ω

Given the SDE:

Consider a function             doubly differentiable in space and admitting 
single derivatives in time. Then the process                          satisfies: 

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

f(t, x)
Yt = f(t,Xt)

dYt =

(

∂tf +∇f!µ(Xt, t) +
1

2
tr(σ(Xt, t)

!
∇∇fσ(Xt, t))

)

dt+∇f!σ(Xt, t)dWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Let us solve the SDE:

now consider the transformation                      what are ?Yt = lnXt

∂tf =??, ∂xf =?? ∂2

x
f =??

dXt = µXtdt+ σXtdWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Let us solve the SDE:

now consider the transformation                      what are ?

dXt = µXtdt+ σXtdWt

Yt = lnXt

∂tf = 0, ∂xf = 1/x ∂2

x
f = −1/x2

dYt =

(

µ

Xt

·Xt −

σ2

2X2
t

·X2

t

)

dt−
σ

Xt

·XtdWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Let us solve the SDE:

now consider the transformation                      what are ?Yt = lnXt

∂tf = 0, ∂xf = 1/x ∂2

x
f = −1/x2

dXt = µXtdt+ σXtdWt

dYt =

(

µ−

σ2

2

)

dt− σdWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Now let us solve the SDE:

Remember                      thus: 

dYt =

(

µ−

σ2

2

)

dt− σdWt

Yt = Y0 +

(

µ−

σ2

2

)
∫

t

0

ds− σ

∫

t

0

dWs = Y0 +

(

µ−

σ2

2

)

t+ σWt

Yt = lnXt

Xt = e
Yt

= X0e

(

µ−σ
2

2

)

t+σWt



Fokker Plank Equation
How does the marginal density evolve (SDEs ó Parabolic PDEs)

∪,∩, \Ω

What is the probability density of the SDE solution at a given time ?

There's a special PDE (think heat equation) whose solution yield the 
marginal density:

LawXt = pt(x) =???

∂tpt(x) = −

d∑

i=1

∂xi
[µi(t, xi)pt(x)] +

d∑

i,j=1

∂xi,xj
[σσ!

ij(t, x)pt(x)]



Fokker Plank Equation
How does the marginal density evolve (SDEs ó Parabolic PDEs)

∪,∩, \Ω

What is the probability density of the SDE solution at a given time ?

There's a special PDE (think heat equation) whose solution yield the 
marginal density:

LawXt = pt(x) =???

∂tpt(x) = P(pt)



Infinitesimal Generator
Uniquely Characterises PDE and Adjoint to FPK Operator

∪,∩, \Ω

Consider the following operator for a given SDE

Can be shown to reduce to:

At[f(x)] = lim
t→0

E[f(Xt)]− x

t

At[f ] = ∂tf + µ ·∇f +
1

2

∑

ij

[σσ!]ij(x, t)∂xi,xj
f

= ∂tf + P†(f)



Linear SDEs
OU - Process

∪,∩, \Ω

Mean reverting process. Reverts you back to mu.

X0 ∼ π

dXt = α(µ−Xt)dt+
√

2αdWt



Linear SDEs
OU - Process

∪,∩, \Ω

For simplicity focus on the 0-mean case.

X0 ∼ π

dXt = −αXtdt+
√

2αdWt



Linear SDEs
OU - Process

∪,∩, \Ω

Can be solved analytically via Integrating factor + Ito’s Lemma (notice 
how X_t looks like the DDPM kernel):

Xt = X0e
−αt + (1− e

−2αt)1/2W1

Xt = X0e
−αt +W1−e−2αt



Linear SDEs
OU - Process

∪,∩, \Ω

Intuitively you can see how the limit behaves:

This is a completely informal/heuristic treatment. Calling it a heuristic is 
kind, but you can see where it is going.

lim
t→∞

Xt

??
= W1 ∼ N (0, I)



Linear SDEs
OU - Process

∪,∩, \Ω

More formal arguments can be made:

Can be a bit tricky to show from scratch, typically involves working with the 
Fokker Plank Equation + Using an Eigen decomposition of its semi group. 
Alternatively, Martingale methods have also been used. 

Convergence in KL, W_p can also be attained see Bakry, Gentil, Ledoux 
Analysis and Geometry of Markov Diffusion Operators.

||LawXt −N (0, I)||TV ≤ Ce−αt



Non Linear SDEs  - Simply Discretise
Euler Maruyama (EM) Discretisation

∪,∩, \Ω

To solve SDEs of the form

We simply discretize them via EM

Can prove convergence in          .  Can we design better integrators ? 

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

X0 ∼ π,

εtk ∼ N (0, γI)

Xtk+1
= Xtk + µ(Xtk , tk)δt+

√
δtσ(Xtk , tk)εtk ,

L
p(P)



Time Reversal - Chain Rule
A discrete time “heuristic” sketch

∪,∩, \Ω

Via the chain rule we can decompose the joint in either direction,

Now consider an EM approx transition density, for the forward kernel:

pt|t+δ(x|y)pt+δ(y)=pt+δ|t(y|x)pt(x)

pt|t+δ(x|y) =?

pt+δ|t(y|x) = N (y|x+ f+(x)δ, δσ2)



Time Reversal - Chain Rule
A discrete time “heuristic” sketch

∪,∩, \Ω

Via the chain rule we can decompose the joint in either direction,

Now consider an EM approx transition density, for the forward kernel:

pt|t+δ(x|y)pt+δ(y)=pt+δ|t(y|x)pt(x)

pt|t+δ(x|y) = pt+δ|t(y|x)
pt(x)

pt+δ(y)

pt+δ|t(y|x) = N (y|x+ f+(x)δ, δσ2)



Time Reversal - Chain Rule
A discrete time “heuristic” sketch

∪,∩, \Ω

Via Taylors Theorem we can expand time t marginal around y:

Assuming 

pt|t+δ(x|y) = pt+δ|t(y|x)
pt(y)e(x−y)!∇y ln pt(y)+O(δ2)

pt+δ(y)

pt|t+δ(x|y) = pt+δ|t(y|x)e
(x−y)!∇y ln pt(y)+O(δ2)

| ln pt(x)− ln ps(x)| = O(|t− s|2)



Time Reversal - Chain Rule
A discrete time “heuristic” sketch

∪,∩, \Ω

Regrouping and completing the square:

Which corresponds to the Euler Maruyama discretization of the 
following SDE (seem familiar ?):

pt|t+δ(x|y) =
e−

||x−(y−f+(y)δ+σ2∇y ln pt(y)δ||2

σ2δ
+O(δ2)

√
2πδd/2σd

dXt =
(

−f+(Xt, T − t) + σ2
∇Xt

ln pT−t(Xt)
)

dt+ σdWt



Time Reversal - Chain Rule
A discrete time “heuristic” sketch

∪,∩, \Ω

Inspecting the relationship between the drifts yields Nelsons duality 
formula:

f−(x, t) + f+(x, T − t) = σ2
∇x ln pT−t(x)



Time Reversal - Chain Rule
A discrete time “heuristic” sketch

∪,∩, \Ω

Inspecting the relationship between the drifts yields Nelsons duality 
formula:

Looks slightly different to Song et al. 2021, why ? 

f−(x, t) + f+(x, T − t) = σ2
∇x ln pT−t(x)



Time Reversal - Chain Rule
Nelsons Relation – Semantics Clarification

∪,∩, \Ω

Looks slightly different to Song et al. 2020, why ? 
Due to 2 equivalent ways of representing time reversals: 

Forward SDE (e.g. De Bortoli 2021)           Backwards SDE (e.g. Song 2021)          
- Travels forward in time                                - Travels Backwards in time

- Flips / No longer the same joint                 - Encodes the same joint

f−(x, t) + f+(x,T− t) = σ
2
∇x lnpT−t(x) f−(x, t)− f+(x, t) = σ

2
∇x lnpt(x)

dXt = f
−(Xt, t)dt+ σdWt dX−

t
= f

−(X−

t
, t)dt+ σdW−

t

Law(xt)
T

t=0 = Law(yT−t)
T

t=0 Law(xt)
T

t=0 = Law(yt)
T

t=0

dYt = f+(Yt, t)dt+ σdWt



Time Reversal – Generative Modelling
Time reversing VP-SDE / OU Process [Song 2021, De Bortoli 2021]

∪,∩, \Ω

Consider the time homogenous VP-SDE (OU Process):

Then its time reversal                                       satisfies the score SDE [Song 2021]:  

Where                       , thus we could instead sample approximately
and have                            following the mixing rate of the OU [De Bortoli 2021]

dYt = (αYt + 2α∇Yt
ln pT−t(Yt)) dt+

√
2αdBt

dXt = −βXtdt+
√

2βdWt

X0 ∼ pdata

Y0 ∼ pT ≈ N (0, I)

YT ∼ pdata Y0 ∼ N (0, I)
LawYT ≈ pdata

(Yt)
T
t=0

d
= (XT−t)

T
t=0



Doobs – Transform (Quick Version)
Introduction

∪,∩, \Ω

Given the SDE with transition density 

We would like to find the process arising from conditioning the above 
SDE to hit a deterministic end point.

Is this process itself an SDE ? Turns out it is. 

dXt = f(Xt, t)dt+ σdWt

pt|s(x|y)

pt|s,T (xt|xs, xT = z) =
pt|s,T (xT = z|xt)pt|s(xt|xs)

p(xT = z|xs)



Doobs – Transform (Quick Version)
Formal(ish) Statement

∪,∩, \Ω

Given the SDE

Then its conditioning to hit a point at time T is given by

Where                     and 
relevant result for conditional generation (e.g. inpainting)

dXt = f(Xt, t)dt+ σdWt

dZt = (f(Zt, t) + σ2∇ ln pT |t(z|Zt))dt+ σdWt

ZT ∼ δz
p
h
t|s(zt|zs) = pt|s,T (zt|zs, zT = z)



Doobs – Transform – Example Pinned Brownian
Generative Modelling / Sampling with Pinned Brownian Motion

∪,∩, \Ω

Consider a Brownian Motion, starting from an arbitrary distribution

Then its conditioned SDE to hit 0 at time t is given by 

Where                     note the time reversal of        maps from 0 to the data 
distribution, learning its score provides us with an alternative generative 
model to VP-SDE / OU see [Vargas et al. 2022, Ye et al 2022.]. 

dXt = σdWt

dZt = −

Xt

T − t
dt+ σdWt

ZT ∼ δ0

X0 ∼ pdata

Zt



Diffusion Models and SDEs
Lecture 3:

Girsanov Theorem, KL Divergence, Half Bridges, FK- Formula



The optimal predictor of X as a function of Y (Hilbert projection)

Is given by the conditional expectation:

Reminder
Conditional Expectation Property

∪,∩, \Ω

argmin
f−is measurable

E (X − f(Y ))2

f∗(Y ) = E[X|Y ]



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗ = argmin
s−is measurable

E

[

∫ T

0

∣

∣

∣

∣∇ ln pt|0(Xt|X0)− s(t,Xt)
∣

∣

∣

∣

2
dt

]



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) = EX0|Xt
[∇ ln pt|0(Xt|X0)|Xt = x]

s∗ = argmin
s−is measurable

E

[

∫ T

0

∣

∣

∣

∣∇ ln pt|0(Xt|X0)− s(t,Xt)
∣

∣

∣

∣

2
dt

]



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) = EX0|Xt
[∇ ln pt|0(Xt|X0)|Xt = x]

s∗(t, x) =

∫
p0|t(x0|x)∇ ln pt|0(x|x0)dx0

s∗ = argmin
s−is measurable

E

[

∫ T

0

∣

∣

∣

∣∇ ln pt|0(Xt|X0)− s(t,Xt)
∣

∣

∣

∣

2
dt

]



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) = EX0|Xt
[∇ ln pt|0(Xt|X0)|Xt = x]

s∗(t, x) =

∫
p0|t(x0|x)∇ ln pt|0(x|x0)dx0

s∗(t, x) =

∫
pt|0(x|x0)p0(x0)

pt(x)
∇ ln pt|0(x|x0)dx0

s∗ = argmin
s−is measurable

E

[

∫ T

0

∣

∣

∣

∣∇ ln pt|0(Xt|X0)− s(t,Xt)
∣

∣

∣

∣

2
dt

]



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) =

∫
pt|0(x|x0)p0(x0)

pt(x)
∇ ln pt|0(x|x0)dx0



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) =

∫
pt|0(x|x0)p0(x0)

pt(x)
∇ ln pt|0(x|x0)dx0

s∗(t, x) =
1

pt(x)

∫
p0(x0)∇pt|0(x|x0)dx0



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) =

∫
pt|0(x|x0)p0(x0)

pt(x)
∇ ln pt|0(x|x0)dx0

s∗(t, x) =
1

pt(x)

∫
p0(x0)∇pt|0(x|x0)dx0

s∗(t, x) =
1

pt(x)
∇

∫
p0(x0)pt|0(x|x0)dx0



Tractable Score matching loss
Last Lecture – Song Score Matching Objective 

∪,∩, \Ω

s∗(t, x) =

∫
pt|0(x|x0)p0(x0)

pt(x)
∇ ln pt|0(x|x0)dx0

s∗(t, x) =
1

pt(x)

∫
p0(x0)∇pt|0(x|x0)dx0

s∗(t, x) =
1

pt(x)
∇

∫
p0(x0)pt|0(x|x0)dx0

s∗(t, x) =
1

pt(x)
∇pt(x) = ∇x ln pt(x)



Given Novikovs condition and a Brownian motion in the probability 
space                  follows that:

Is a Brownian motion in the probability space                   . Where 

Girsanov Theorem I
General Statement

∪,∩, \Ω

Bt = Wt +

∫
t

0

Θ(t)ds

(Ω,F ,P)

(Ω,F ,Q)

dQ

dP
= exp

(

−

∫ T

0

Θ(t)!dWt −
1

2

∫ T

0

||Θ(t)||2dt

)



Given the SDE  

With probability space                 . Then it follows that:

Is a Brownian motion in the probability space                   . Where 

Girsanovs Theorem - Corollary
General Statement

∪,∩, \Ω

dW σ

t
= σ(W σ

t
, t)dWt

Bt = Wt −

∫
t

0

µ(W σ

s
, s)σ−1(W σ

s
, s)ds

(Ω,F ,P)

(Ω,F ,Q)

dQ

dP
= exp

(

∫ T

0

σ−1(W σ

t , t)µ(W
σ

t , t)
"dWt −

1

2

∫ T

0

σ−2(W σ

t , t)||µ(W
σ

t , t)||
2dt

)



Given the SDE  

With probability space                 . Then it follows that:

Is a Brownian motion in the probability space                   . Where 

Girsanovs Theorem - Corollary
General Statement

∪,∩, \Ω

dW σ

t
= σ(W σ

t
, t)dWt

dBt = dWt − µ(W σ

t
, t)σ−1(W σ

t
, t)dt

(Ω,F ,P)

(Ω,F ,Q)

dQ

dP
= exp

(

∫ T

0

σ−1(W σ

t , t)µ(W
σ

t , t)
"dWt −

1

2

∫ T

0

σ−2(W σ

t , t)||µ(W
σ

t , t)||
2dt

)



Furthermore, we have that 

Thus, in the space                    the process          weakly solves the SDE

With:

Girsanovs Theorem - Corollary
General Statement

∪,∩, \Ω

dW σ

t
= σ(W σ

t
, t)(dBt + σ−1µ(W σ

t
, t)dt)

= µ(W σ

t
, t)dt+ σ(W σ

t
, t)dBt

(Ω,F ,Q) W
σ

t

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt

dQ

dP
= exp

(

∫ T

0

σ−1(W σ

t , t)µ(W
σ

t , t)
"dWt −

1

2

∫ T

0

σ−2(W σ

t , t)||µ(W
σ

t , t)||
2dt

)



Then we have that:

Which is effectively the statement of the RN theorem, so it follows that

Girsanovs Theorem – RND Corollary
Importance Sampling Again

∪,∩, \Ω

EQ[f(X)] = EP

[

exp

(

∫ T

0

σ−1

t µ"
t dWt −

1

2

∫ T

0

σ−2

t ||µt||
2dt

)

f(W σ)

]

dPX

dPWσ

(W σ) = exp

(

∫ T

0

σ−1

t µ"
t dWt −

1

2

∫ T

0

σ−2

t ||µt||
2dt

)



This result gives us the RND when evaluated on a sample from         if 
instead we wanted to evaluate the RND on a sample from      we would 
have to apply Girsanovs theorem with a sign flip starting from the SDE 
solving      and transforming it to the law of        resulting in:        

So, remember depending on what we take expectations with respect to 
the signs in the RND will change. 

Optional bonus exercise with 1d Gaussians to be added to homework.

Girsanovs Theorem – RND Corollary
Caveat !!

W
σ

dPX

dPWσ

(X) = exp

(

∫ T

0

σ−1

t µ"
t dWt +

1

2

∫ T

0

σ−2

t ||µt||
2dt

)

X

W
σ

X



Given 2 SDEs (with the same initial condition X_0=Y_0=x):
,

satisfying all the conditions we have discussed. It follows that: 

RNDs – General Result
Likelihood Ratio Between Diffusions

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt dYt = ρ(Yt, t)dt+ σ(Yt, t)dBt

dPX

dPY

(X) = exp

(

∫ T

0

σ−1

t (µt − ρt)
"dWt +

1

2

∫ T

0

σ−2

t ||µt − ρt||
2dt

)

dPX

dPY

(Y ) = exp

(

∫ T

0

σ−1

t (µt − ρt)
"dWt −

1

2

∫ T

0

σ−2

t ||µt − ρt||
2dt

)



Remember (changing notation a bit P^f refers to the SDE with drift f)

Now applying Girsanov’s theorem (e.g. the corollaries we derived):

KL- Divergence
Likelihood Ratio Between Diffusions

DKL(P
µ||Pρ) = EX∼Pµ

[

ln
dPµ

dPρ
(X)

]

DKL(P
µ||Pρ) = EX∼Pµ

[

∫ T

0

σ−1

t (µt − ρt)
#dWt +

1

2

∫ T

0

σ−2

t ||µt − ρt||
2dt

]

= EX∼Pµ

[

1

2

∫ T

0

σ−2

t ||µt − ρt||
2
dt

]



Remember the Ito integral is a Martingale (1st Lecture) and thus has 0 
expectation resulting in:

Now consider the case where X is the time reversal of an OU process 
and we can parametrize P^\rho as a score network SDE, which results 
in:

KL- Divergence – Score Matching 
Likelihood Ratio Between Diffusions – OU time reversal

DKL(P
µ||Pρ) = EX∼Pµ

[

1

2

∫ T

0

σ−2

t ||µt − ρt||
2dt

]

DKL(P
βx+∇ ln pT−t(x)||Pβx+sρT−t(x)) = EX∼Pµ

[

1

2

∫ T

0
σ2
T−t||∇ ln pT−t − s

ρ
T−t||

2dt

]



Now remember we can sample X_t via sampling Z_{T-t} where Z_t is 
the original (non reversed) noising OU process thus we have:

Same mean squared error objective as in Song et al. 2021 !

KL- Divergence – Score Matching 
Likelihood Ratio Between Diffusions – OU time reversal

DKL(P
µ||Pρ) = EX∼Pµ

[

1

2

∫ T

0

σ2

T−t||∇ ln pT−t − s
ρ
T−t||

2dt

]

DKL(P
µ||Pρ) = EZ∼Pµ

[

1

2

∫ T

0

σ2

t ||∇ ln pt − s
ρ
t ||

2dt

]



Which under certain regularity assumptions (which SDEs satisfies) 
implies

Sometimes written as

Chain Rule – Disintegration Theorem
The chain rule is a little bit more complicated for path measures

dP = dP·|0(|x)dP0(x)

P(A0 ×A(0,T ]) =

∫
A0

P·|0(A(0,T ]|x)dP0(x)

dP

dQ
(·) =

dP·|0(|x)

dQ·|0(|x)

dP0

dQ0

(x)



Which under certain regularity assumptions (which SDEs satisfies) 
implies

Sometimes written as

Chain Rule – Disintegration Theorem
The chain rule is a little bit more complicated for path measures

P(A0 ×A(0,T ]) =

∫
A0

P·|0(A(0,T ]|x)dP0(x)

dP = dP·|0(|x)dP0(x)

dP

dQ
(·) =

dP·|0(|x)

dQ·|0(|x)

dP0

dQ0

(x)



Then

Half Bridges – Constrained KL minimisation
Constrained Optimisation

P
∗ = argmin

P : s.t. PT=π

DKL(P||P
ρ)

dP
∗
= dP

ρ dπ

dP
ρ
T



Now applying Girsanovs Theorem (Stochastic Control Objective)  

Half Bridges – Constrained KL minimisation
Unconstrained Formulation – Stochastic Control

P
∗ = argmin

P

DKL(P
µ||P∗)

= argmin
P

DKL(P
µ||Pρ)− E

[

ln
dπ

dPρ
T

]

argmin
µ

EX∼Pµ

[

1

2

∫ T

0

σ−2

t ||µt − ρt||
2dt

]

− E

[

ln
dπ

dPρ
T

]

P
µ

0
= P

∗

0



Generative Modelling and Sampling/Inference 
2 Sides of the same Coin 

∪,∩, \Ω

Generative Modelling                                             Sampling / Inference
- Access to samples.                                     - Access to a density up to constant

- Typically optimises Forward KL                - Usually optimises Reverse KL

- e.g Score Matching, DDPM, MLE             - e.g DDS, PIS, DIS

pdata =
1

N

∑

n

δxi pdata(x) =
e
−U(x)

Z

argminPKL(Q||P) argminQKL(Q||P)

All fall under the half bridge framework !

Vargas, F., Grathwohl, W. and Doucet, A., 2023. 
Denoising diffusion samplers. ICLR 2023



Diffusion Models and SDEs
Lecture 4:

Schrodinger Bridges, IPF/Sinkhorn, Entropic Optimal Transport



In 1931/32, Erwin Schrodinger proposed the following 
Gedankenexperiment [52, 53]: 

Consider the evolution of a cloud of N independent Brownian particles 
in R^3 . This cloud of particles has been observed having at the initial 
time t = 0 an empirical distribution equal to      . 

Schrodinger 1931/32

Schrodinger Bridges – Intuition

π0



At time t = T, an empirical distribution       is observed which 
considerably differs from what it should be according to the law of 
large numbers (N is large, typically of the order of Avogadro’s number), 
namely

It seems that the particles have been transported in an unlikely way. 
But of the many unlikely ways in which this could have happened, 
which one is the most likely?

Schrodinger 1931/32

Schrodinger Bridges – Intuition

π1(y) !=

∫
R3

N (y;x, T )π0(x)dx

π1



Schrodinger 1931/32

Schrodinger Bridges – Motivation



Much  harder problem than half bridges. Does not admit such a simple 
unconstrained formulation.  Lets disintegrate:

Constrained Optimisation

P
∗ = argmin

P : s.t. P0=π0,PT=π1

DKL(P||P
ρ)

Schrodinger Bridges – Constrained KL minimisation

argmin
P : s.t. P0=π0,PT=π1

DKL(P0,T ||P
ρ
0,T ) + EP0,T

DKL(P|0,T ||P
ρ
|0,T )



Already looking like Entropic OT simply let p(x|y) = exp(-c(x,y)/sigma^2) 
and we arrive at your usual entropic OT objective. 

From Dynamic SBP to Static Entropic OT

Schrodinger Bridges – Entropic Optimal Transport

argmin
P : s.t. P0=π0,PT=π1

DKL(P0,T ||P
ρ
0,T )

argmin
p(x,y): s.t.p(x)=π0,p(y)=π1

E[σ2 ln pρ
T |0(y|x)] + σ2H(p)

argmin
P : s.t. P0=π0,PT=π1

DKL(P0,T ||P
ρ
0,T ) + EP0,T

!
!

!
!

!
!
!
!

DKL(P|0,T ||P
ρ
|0,T )



Let \rho=0 then we have :

Aka the entropy regularized Wasserstein distance between the 
boundary distributions.

From Dynamic SBP to Static Entropic OT

Schrodinger Bridges – Entropic Optimal Transport

min
p(x,y): s.t.p(x)=π0,p(y)=π1

E[σ2 ln pρ
T |0(y|x)] + σ2H(p)

min
p(x,y): s.t.p(x)=π0,p(y)=π1

E[||y − x||2] + σ2H(p) = W2
2,σ2(π0,π1)



The above IPF (Iterative Proportional Fitting) iterates also known as 
sinkhorn have been proved to converge to the Schrodinger bridge 
solution. This approach dates back to Kullback.

Solution - Alternating Subproblems (Coordinate Ascent  - Sinkhorn Algorithm)

Q∗

i = argmin
Q : s.t. QT=π1

DKL(Q||P∗

i )

Schrodinger Bridges – IPF/Sinkhorn Algorithm

P∗

i+1 = argmin
P : s.t. P0=π0

DKL(P||Q
∗

i )

P
∗

0 = P
ρ



These should look familiar

They are half bridges, and we know how to solve via score matching or 
stochastic control (i.e., via minimizing forward or reverse KL iteratively). 

Solution - Alternating Subproblems (Coordinate Ascent  - Sinkhorn Algorithm)

Q∗

i = argmin
Q : s.t. QT=π1

DKL(Q||P∗

i )

Schrodinger Bridges – IPF/Sinkhorn Algorithm

P∗

i+1 = argmin
P : s.t. P0=π0

DKL(P||Q
∗

i )

Vargas, F., Thodoroff, P., Lamacraft, A. and Lawrence, N., 2021. Solving schrödinger bridges via maximum likelihood. Entropy, 23(9), p.1134.



Another way to formulate the solution (and construct iterations) is 
based on the Schrodinger system:

Result can be arrived at via Disintegration Theorem ->  Lagrange 
Multipliers -> Calc of Variations. (The potentials are the Lagrange 
multipliers).

Solution – Functional System of Potentials

Schrodinger Bridges – Schrodinger System

φ̂0(x)φ0(x) = π0(x), φ̂1(y)φ1(y) = π1(y)

φ0(x) =

∫
pT |0(x|y)φ1(y)dy, φ̂1(y) =

∫
pT |0(y|x)φ̂0(x)dx



Then given the potentials we have that

Solve The Schrodinger Bridge when the path measures represent SDE 
solutions.

Solution – Functional System of Potentials

Schrodinger Bridges – Schrodinger System

dXt =

(

ρ+ σ2

(

∇Xt
ln

∫

φ1(z)p
ρ
T |t(z|Xt)dx

))

dt+ σdWt

dYt =

(

ρ− σ2

(

∇Yt
ln

∫

φ̂0(z)p
ρ
t|0(Yt|z)dz

))

dt+ σdW−
t

X0 ∼ π0

Y0 ∼ π1



Furthermore, the potentials 

Solve the Following PDEs (remember space-time regularity from Doobs 
transform):

These are just the FPK and the backward Kolmogorov equations. With funky 
boundary conditions.

Solution – PDE Formulation

Schrodinger Bridges – Schrodinger System

φt(x) =

∫
φ1(z)p

ρ
T |t(z|x)dx φ̂t(y) =

∫
φ̂0(z)p

ρ

t|0(y|z)dz

−∂tφt = ∇φt · ρ+ σ2∆φt,

∂tφ̂t = −∇ · (φ̂tρ) + σ2∆φ̂t,

φ̂0(x)φ0(x) = π0(x)

φ̂1(y)φ1(y) = π1(y)



Via reversing Flemings/Hopf-Cole transform that is:

Then through some standard calculus we arrive at the following HJB-PDEs:

And thus, connecting to stochastic control / verification results etc.

Solution – PDE Formulation

Schrodinger Bridges – HJB/Hopf-Cole/Flemming

ψt(x) = exp(φt(x)), ψ̂t(y) = exp(φ̂t(y))

−∂tψt = ||σ∇ψt||
2 +∇ψt · ρ+ σ2∆ψt, ψ̂0(x) + ψ0(x) = lnπ0(x)

ψ̂1(y) + ψ1(y) = lnπ1(y)∂tψ̂t = ||σ∇ψ̂t||
2 −∇ψ̂t · (ρ− ln pt) + σ2∆ψ̂t,



We studied two SDEs which transform complex distributions into simple 
distributions:

The OU process which rapidly mixes into a Gaussian, and the Pinned 
Brownian motion which instantaneously maps any distribution into a point 
mass.

Their respective time reversals provide us with tractable generative models!

OU and Pinned Brownian Motion

Recap and Take Aways

X0 ∼ π

dXt = α(µ−Xt)dt+
√

2αdWt

X0 ∼ π

dXt =
µ−Xt

T − t
dt+

√
σdWt

Z0 ∼ lawXT ≈ N (µ, 1)

dZt = (α(Zt − µ) + 2α∇ ln pT−t(Zt))dt+
√
2αdBt

Z0 = µ

dZt =
(Zt − µ

t
+ σ2

∇ ln pT−t(Zt)
)

dt+ σdBt



In both settings we can learn the score and thus the time reversal via solving 
simple MSE/Regression objectives where we sample from the original noising 
processes to generate the “data” for the objectives.

In both cases learning the score / time reversal has an equivalent variational 
formulation in terms of half/full bridges:

Which can be applied to gen modelling, sampling, path simulation, etc.

OU and Pinned Brownian Motion

Recap and Take Aways

Z0 ∼ lawXT ≈ N (µ, 1)

dZt = (α(Zt − µ) + 2α∇ ln pT−t(Zt))dt+
√
2αdBt

Z0 = µ

dZt =
(Zt − µ

t
+ σ2

∇ ln pT−t(Zt)
)

dt+ σdBt

argmin
P : s.t. PT=π

DKL(P||P
α(µ−x)) argmin

P : s.t. P0=δ0,PT=π
DKL(P||P

0)



What did we miss ??

- Feynman Kac Formula (Useful for re-expressing marginals ,deriving ELBOs)
- Trading scores with divergences via integration by parts (Allows for a 

Hutchinsons type estimator)
- Thorough introduction to backwards Ito integrals and divergence based 

conversion formula.
- Stochastic Control, HJB Equation, Equivalence between time reversal and 

control.
- Discrete time convergence results (De Bortoli et al 2021,  De Bortoli 2022, 

Chen et al 2022 …)
- And much much more … 



Shameless plug - Presented Wednesday
In this paper we introduce a novel unifying framework for diffusion-based 
models, that engulfs both sampling and generative modelling. Additionally, 
we also make connections to statistical mechanics (Crooks Fluctuation 
Theorem / Jarzynski Equality) and sequential importance sampling.



Appendix



Consider the linear Parabolic PDE  

Then subject to Lip conditions it follows that

with

Feynman - Kac Formula
PDE Solving via MC – Path Integral

∂tvt(x) = −

d∑

i=1

µi(t, xi)∂xi
vt(x)−

d∑

i,j=1

[σσ!]ij(t, x)∂xi,xj
vt(x)] + vt(x)V (x, t)− f(x, t)

vt(x) = EX∼Q

[

∫ T

t

e−
∫

s

t
V (Xs,s)drf(Xs, s)ds+ e−

∫
T

t
V (Xr,r)drφ(XT )

]

v0(x) = φ(x)

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt



Doobs – Transform (Quick Version)
Proof Sketch – Part I : Transition Density

∪,∩, \Ω

First condition and apply Bayes Theorem

Now the Markov property

Now we need to find an SDE with this transition density. 

pt+δ|t,T (zt+δ|zt, zT = z) =
pT |t,t+δ(zT = z|zt, zt+δ)pt+δ|t(zt+δ|zt)

pT |t(zT = z|zt)

pt+δ|t,T (zt+δ|zt, zT = z) =
pT |t+δ(zT = z|zt+δ)pt+δ|t(zt+δ|zt)

pT |t(zT = z|zt)



Doobs – Transform (Quick Version)
Proof Sketch – Part 2 : Space Time Regular

∪,∩, \Ω

The h-transform satisfies (since it satisfies backward Kolmogorov):

At(pT |t+δ(zT = z|zt+δ)) = 0



Doobs – Transform (Quick Version)
Proof Sketch – Part 3 : Finding the drift

∪,∩, \Ω

Take time derivatives see what happens

∂tpt|s,T (zt|zs, zT = z) =
1

pT |s(zT = z|zs)
∂tpT |t(zT = z|zt)pt|s(zt|zs)

=
1

pT |s(zT = z|zs)
(pt|s(zt|zs)∂tpT |t(zT = z|zt) + pT |t(zT = z|zt)∂tpt|s(zt|zs))

=
1

h(zs, s)
(−pt|s(zt|zs)P

†h(zt, t) + h(zt, t)Ppt|s(zt|zs))

=
1

h(zs, s)

(

Ph(zt, t)pt|s(zt|zs) +∇pt|s(zt|zs) ·∇h(zt, t) + pt|s(zt|zs)∆h(zt, t)
)

=
1

h(zs, s)

(

Ph(zt, t)pt|s(zt|zs) +∇ · (h(zt, t)pt|s(zt|zs)∇ lnh(zt, t))
)


