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Introduction and motivation

® The probability of 3D atom locations in a molecule is given
by the Boltzmann distribution:

p(x) o< {-E(x) / (kT) },

where E(x) is the energy, k and T are constants.

® It allows us to answer important questions:

Does a drug molecule bind to a target protein?

Many other applications as well!

Animation source: D. E. Shaw Research.



Based on slides by I. Murray

Markov Chain Monte Carlo (MCMC)

Main idea: construct a biased random walk that explores a target distribution p,(x) whose
normalization constant may not be known.

The random walk transition operator follows the Markov assumption:
Xy v T(Xt‘xt_l) .

The stationary distribution of {x;} will be p,(x):

{xt} are approximate, correlated samples from p,(x). )



E Based on slides by |. Murra
Detailed balance y y

Means that transitions a — b and b — a are equally probable in the chain:
T(X |x)pu(x) = T(x[x)pu(x) . (1)
Detailed balance implies that the invariant distribution is p,(x’):

Z T (X |x)pe(x) = pu(X) Z T(x|x") = pu(X).

X X
{x} satisfies detailed balanced < {x} is reversible, that is, x1,...,xy and xp, ..., x1 have
the same probability distribution:

To construct a chain that samples
from p,(x), just find T(x'|x)
satisfying (1).

Figure source: Ryan P. Adams
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Based on slides by I. Murray

Metropolis-Hastings
One of the algorithms with highest influence in science and engineering!
Works by sampling from the transition operator given by

1- Draw a proposal from an easy distribution g(x'|x), e.g., N (xX'|x, ol).

2- Accept with probability min (1 p*((x/))j((:lf;))>

3 - Otherwise the next state x’ in chain is a copy of current state x.

Acceptance ratio does not change if p,(x) is not normalized.

The MH transition operator can be shown to satisfy detailed balance:

p. (T ) = pa(ax min (1, 22 ) — i (. ()b . (i)
= px(x')g(x[x")min ( p«(x)a(xx) 1) =

p«(x")g(x|x’)’

P (x') T (x[x')
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Example

MH with N(0,1.000%) proposal
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Example

MH with N(0,500.000%) proposal
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Example

MH with N(0,8.000%) proposal
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Based on slides by I. Murray

Limitations of Metropolis-Hastings (MH)
P« (x)

® Typically, g(x'|x) = N(X'|x, ol) and proposals follow a random walk.

e |f o is large, we reject a lot!

® If o is small, the chain diffuses very slowly: ~ [?/0? steps required to obtain
independent samples.

Figure source: lan Murray. 9



Based on slides by I. Murray

Hamiltonian dynamics

Introduce velocity v carrying kinetic energy K(v) — lvTU

Some physics:
e Total energy or Hamiltonian: H(x,v) = E(x) + K(v)

e Frictionless ball rolling (x, v) — (x', v') satisfies H(x,v) = H(x', v')

de  OH(z,v) q dv  0H(z,v)
dt Ov W w T Ox

e |deal Hamiltonian dynamics are time reversible:

— reverse v and the ball will return to its start point

10



Based on slides by I. Murray

Hamiltonian Monte Carlo

Define a joint distribution as

p(.’L’,’U) X e—E(a?)e—K(’U) - e—E(a’})—K(v) — e—H(CIJ,’U)

where velocity v variables are independent and Gaussian distributed.

Markov Chain Transition Operator

1. Sample velocity v from its marginal
2. Simulate Hamiltonian dynamics then flip sign of velocity

x,v)=qx v|x' v

— MH proposal q is deterministic and reversible g(x’, v'

— Conservation of energy means p(x, v) = p(x’, v')
— MH acceptance probability is 1

11



Based on slides by I. Murray
Leap-frog dynamics

A discrete approximation to Hamiltonian dynamics:

it +€/2) = ul®) — 55 (@)

z;(t+€) = z;(t) + ev;(t + €/2)
vilt) = vilt + ¢/2) — <28

e His not conserved

(z(t) + €)

e dynamics are still deterministic and reversible
e Acceptance probability becomes min[/, exp {H(V', x") — H(v, x)}]

12



Hamiltonian Monte Carlo vs Metropolis Hastings

https://www.youtube.com/watch?v=Vv3fOQNWvWQ
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https://www.youtube.com/watch?v=Vv3f0QNWvWQ

Limitations of MCMC methods

e Often stuck into a few modes in multimodal distributions

e Generated samples are correlated and not independent!

e Samples from the past are not used to improve the generation of new samples
e Small step sizes needed to guarantee acceptance

e \ery slow in practice!

— E.g. Sampling a molecular events may take years on a supercomputer

14



Alternative: use deep generative models!

They are neural networks that transform tractable random variables into complicated ones.

Their goal is to approximate a complicated target distribution (often the data distribution).

Tractable Neural Approximate Target
noise network distribution distribution
p(z)
04 /7
02{ /i ~

Data space Data space

Once trained, they can often do tractable independent data sampling and density evaluation.

15
Noé, Frank, et al. "Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning." Science 365.6457 (2019).



Invertible transformations of random variables

Probability mass is preserved

Slide source Eric Jang

p(x) dx = p(y) dy

p(y)

y=f(x)=2x +1




Density of the transformed variables

p(y) dy = p(x) dx

p(y) = p(x) [dx / dy|

p(y) = p(x) / |dy / dx|

log p(y) = log p(x) - log |dy / dx|

Slide source Eric Jang

Why use absolute values ?

dy dy
d:z:>0 @<0

y y+dy y y+dy

X x+dx X x+dx
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Higher dimensions

In higher dimensions, change in volume is the determinant of the Jacobian of f(x).

0fi Of ] Example:
%, oz, _ |
" ’ Sending a unit square (area = 1) to some
J)(x) = : ‘. . h
- : : parallelogram (area = ad - bc)
Ohn . Ofm
L 8131 3mn i No Scale, Shitt Only

. (asch+d)
/

/f

log p(y) = log p(x) - log |det J(f)(x)|

PR

%, X,
Slide source Eric Jang



Main idea behind normalizing flows

e Use a base distribution p(x) for which log p(x) is tractable and sampling is easy.
e Learn invertible function y = f(x) with associated inverse x = f(y).

e Model learned by maximum likelihood using log p(y) = log p(x) - log |det J(f)(x)|.
e Key challenge: keep computation of f, ! and log |det J(f)(x)| tractable.

e Often f obtained by combining multiple transformations or layers:

P(x) p(y)

A Ao
= /\’\ -— .. _/\/\/\—.

0 0 0

Figure source: Jakub M. Tomczak.
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How to formulate invertible layers?

1) Coupling layers

Y, =X, « %= (¥-10,) ©exp (=501,))

Y, = €xp (S (Xa)> O x4+t (Xa) X, =Y,

Jacobian is tractable!

D—-d

det(J) = HC‘XP (V\' (X,)

2) Permutation layers =]

det(J) = 1

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using Real NVP. ICLR, 2017

Slide source: Jakub M. Tomczak.

) = C\p[

D—d

2.5 (%),

=1

|
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Example

Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurlPS, 2018
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Neural spline flows

e Uses concept of coupling layer

e But transform given by
monotonic rational quadratic
splines

e Multimodal transforms

e Analytic inverse

e Applicable to compact intervals
and circular domains

Durkan et al. Neural spline flows. NeurlPS, 2019.

Figure source: Jonas Kohler, Andreas Kramer and Frank Noé
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Example

Neural spline flows with
two coupling layers,
each with K = 128 bins.

Figure source: Durkan et al. Neural spline flows. NeurlPS, 2019.

Training data

Flow density Flow samples
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Internal coordinates for molecule representation

Molecules can be described via the spatial coordinates x, y, and z of each atom.

However, there are advantages in using internal coordinates such as

e bond lengths, e.g. b,

e bond angles, e.g. ¢,

N

e dihedral angles, e.g. v,

Vv

which naturally capture invariances to rotations and translations.

24



Normalizing flows on circular coordinates

Target Neural Spline Flow

o
- -

o 2 ‘2 0 2 n
¢ ¢
Neural spline flow with the following constraints:
* 9(0)=0,9(2n) =2, g'(x) > 0, g'(0) = g'(2x)
e Avoid 0 and 2x being fixed points by doing phase translation with parameter ¢: x — x + ¢ mod 2n

Target Neural Spline Flow

Rezende et al. Normalizing flows on circles, tori and spheres. In ICML, 2020.

Figure source: Stimper et al., normflows: A PyTorch Package for Normalizing Flows, arXiv:2302.12014, 2023
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Eliminate flow sampling bias with importance sampling

Write instead the integral as an expectation under g(x):

/f(x)p(x) i = / f(x)%q(x) dx, q(x) >0 if p(x) >0
~ %Zf(x”) ggi”; — %Zf(xn)wn, i ~ q(x).
n=1 \,n-/ h=1%

Whn
The w, are known as importance weights.
Can be applied even if the integral is not an expectation.

Given p(x), what is the best sampling proposal g7

26



Effective sample size of importance samples

Logistic regression example:
g equal to Gaussian prior.

Weights can exhibit high variance,
reducing the effective sample size
(ESS) of the generated samples. Let us

define yj; = W,-/(Z:;’:1 w;) then
n )
no ~2 n 2 °
21 Wi Y Vs

ESSis nwhen w; =1/nand 1 if only
one w_i takes a much larger value.

ESS =

N

-2 0 2 Il
wy, = 2.24e-10

T T T T
-4 -2 0 2 1
wy = 0.097

T
-2 0 2 4
wy = 3.19e-24

T
1

-4

-2 0 2
wy = 0.0516

-2 0 2
ws = 0.00363

T
1

-2 0 2
weg = 1.21e-08

Many samples do not contribute to the expectation!
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Annealed importance sampling

Given a target density p, a proposal density ¢ and a sequence

0=70) <:-- < PBg =1, define

m(@) = ple)q(e) ),

and let T (z,2'),...,Tk(z,z") be a sequence of transition kernels such that

T}, leaves ;. invariant. Annealed Impoprtance Sampling amounts to drawing

xy ~ mo(x) followed by
g & Tp(iq:%) ot k= L.y 1,

and return the sample xx together with the importance weight

71'1(.130) 71'2(331) WK(QTK)
mo(zo) m1(x1) Trk-1(TK)

w =

Lo—> L1 —> =+ — > TK-1—"ZTK

Flow
s MCMC MCMC MCMC
o ™ TK-1 TK
When
Br — Bt = —
k— Pk-1 — —
K

It is easy to show that

1 K
logw = N7d Z {log p(zx) — log q(xx)}
k=1

Under some assumptions, variance will
be reduced asymptotically as 1/ K.

Neal, Radford M. "Annealed importance sampling." Statistics and computing 11 (2001): 125-139.
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Example

Target p, proposal ¢, function f

—
o

Samples from ¢ — XY q
Weighted samples from g

px), q(x)
(]
(9]

0.0- T
—4 -2 0 2 4
x
Empirical frequency of importance weights
10
5
g
St
g 5
g
g
= 0
105 10 10 102 107 100 10

Importance weight w

IS estimate,100 samples: 0.10 £ 13.309 — Low ESS!

Slide source: https://random-walks.org/content/misc/ais/ais.html#id2

60 1.01

AIS samples

60

Initial samples from ¢ == T ’

AIS samples
Weighted AIS samples

-4 -2 0 2 4
X
40 Empirical density of AIS importance weights
2
2
3
E 20
=
[="
g
[§3]
0 -5 \—4 \—3 -2 \—1 0 N1
10~ 10 10~ 107~ 10 10 10

Importance weight w

AIS estimate,100 samples: 0.30 + 2.218 — High ESS!
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Challenges fitting flows to multimodal distributions from energy

Training flows from energy can be done by minimizing:

KL(qllp) = / q(x) log %dx

However, this objective results in modes being missed.
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Alpha divergence

oo e [\ A

a—0

KL(ql|p)

e Mode-seeking when a <=0
e Mass-covering when a >= 1

e When a = 2, it quantifies the variance of importance sampling weights:

p(x)?

q(x)

Do=2(pllq) o / dx = Eg(x) ['IUIS(X)Q]

31



How to efficiently optimize the a = 2 divergence?

,D(X)2 1.0 1
Recallthat D, _ X / dx -
2(pllq) ) ol
The optimal IS distribution for estimating D,—2(p||q) is 2 06
2
g X % 04l
We draw samples from g using AlS. 0.2

Assuming that fs(z) = p(z)?/qe(x) is normalized, we obtain -

Vo fo(x)
fo(x)

We call our method Flow Annealed = Eg(x) [Volog go(x)] = — Ears [waisVe log go(Xars)]
Importance Sampling Bootstrap: FAB

VoD sl = By [ } o TR 0] =

32



Signal to noise ratio of gradient estimators

2
i T
How well do we estimate VyD,—2(p|/q) = constant x Vg/ p(( )) dz by Monte Carlo?
qo\T
0.40- 100
afl [ [|eeeee IS with p 17.51
0.35 . ;
p 20 IS with q s
Al —— AlSwitig=p
0.251 - = AIS with g = p2/q 12.5 1
a = £ 10.0
0.20
0.15 40 75
0.10- -
0.0 20 1
N 2:5
0.001
4 2 0 3 4 0 0.0 = = =

X Number of samples Number of AIS distributions



A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:
(1:M)

a. Sample Xq4 from gy obtaining also log C]Q(Xgl:M)) :

34



A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:
(1:M)

a. Sample Xq4 from gy obtaining also log qg(xgl:M)) :

(1:M) (1:M)

(M) . . (1:M)
b. Obtain Xp;g * and log wy g’ by running AIS with input x; "’ and log ga(xg ).

35



A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:
(1:M)

a. Sample Xq4 from gy obtaining also log C]Q(X(l:M)) :

q
(1:M) (1:M)

. (1:M) . L (1:M)
b. Obtain Xp;g * and log wy g’ by running AIS with input x; "’ and log ga(xg ).

1:M : :
c. Add XEMS ) to buffer, together with their log WS'SM) and log qo(x").
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A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:
(1:M)

a. Sample Xq4 from gy obtaining also log qg(xgl:M)) :
( (1:M)

1M : -
b. Obtain Xjyj  and log w e by running AIS with input x* and  log o (x;™).

1:M : :
c. Add XEMS ) to buffer, together with their log WS'SM) and log qo(x").

e Process L minibatches with N samples drawn from the buffer:

(1 (1:N)

a.  Sample X3V from buffer with probability ") and retrieve log g (x4 .
AlS AlS & 96,4\ Xals

37



A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:

a. Sample XE,I:M) from gy obtaining also log qe(xgle)) _
1M : _ :
b. Obtain Xjyj  and log w e by running AIS with input x* and  log o (x;™).

1:M : :
c. Add XEMS ) to buffer, together with their log WS'SM) and log qo(x").

e Process L minibatches with N samples drawn from the buffer:

( (1:N)

a.  Sample X3V from buffer with probability ") and retrieve log g (x4 .
AlS AlS & 96,4\ Xals

b. Calculate AIS weight correction log w*™Y) . — |og Qo4 (xf_\ll‘SN)) — stop-grad(log gs(x

correction

1:N
-
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A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:

a. Sample XE,I:M) from gy obtaining also log qe(xgle)) _
1M : _ :
b. Obtain Xjyj  and log w e by running AIS with input x* and  log o (x;™).

1:M : :
c. Add XEMS ) to buffer, together with their log WS'SM) and log qo(x").

e Process L minibatches with N samples drawn from the buffer:

( (1:N)

a. Sample xAll:SN) from buffer with probability WA|:S and retrieve log qo,q (x(AllgN)) :

b. Calculate AIS weight correction log w*™Y) . — |og Qo4 (xf_\ll‘SN)) — stop-grad(log gs(x

correction
(1:N)

(1:N) (1:N)

(1
Al

2.

c. Update log wy s’ and log qg,, (%) in buffer to log Wais @+ log W, eoion @Nd log qo(XA2)-
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A replay buffer to reuse AlS samples in FAB

e Generate M samples with AIS and add them to buffer:
(1:M)

a. Sample Xq4 from gy obtaining also log C]Q(X(l:M)) :

q
1M : _ :
b. Obtain Xjyj  and log w e by running AIS with input x* and  log o (x;™).

1:M : :
c. Add XEMS ) to buffer, together with their log WS'SM) and log qo(x").

e Process L minibatches with N samples drawn from the buffer:

a. Sample xﬁ\ll:SN) from buffer with probability W/(\}:SN) and retrieve log qo_,, (x(AllzsN)) .
b. Calculate AIS weight correction log w'" ). = log gy, (x\i2")) — stop-grad(log qg(xgl':sN))).

c. Update log w{l2") and log s, (xki¥) in buffer to log w(Z") + log wSY) . and log g (xki).

correction

d. Evaluate and optimize loss —1 /N SN W()to log qe(xgl)s) with ADAM.
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2D mixture of Gaussians problem

Inltlahsatlon Flow w/ ML Flow w/ KLD RBD w/ KLD

Multimodal p and flow g
with pathological
initialization: samples
concentrate in small region.

Coupling flow with 15
layers. K=1 intermediate
AIS distributions with MCMC
transitions given by 1
Metropolis-Hastings step.

Figure: Contour lines for the target distribution p and samples (blue discs) drawn from the

approximation gy obtained by different methods.
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Results for alanine dipeptide

Ground trut _ Flow w/ ML

Neural Spline Flows
with 12 layers. Some
bond angles treated as
circular coordinates.
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K = 8 intermediate AIS
distributions.

o == Ground truth
Hamiltonian Monte ‘g 107 = ELSW:":;EERV(V,
Carlo with 4 Leapfrog 3 10-2 FAB w/ buffer, RW (ours)
steps as AIS transiton £
operator. 8"
210
1073

|
3

|
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Results for alanine dipeptide

Table: ESS, log-likelihood on the test set, and KL divergence (KLD) of Ramachandran plots
with and without reweighting (RW) for each method. Our methods are marked in italic and
best results are emphasized in bold.

ESS (%)  Epgx [log ¢(x)] KLD KLD w/ RW
Floww/ML  28+0.6  209.22+0.28 (7.57+3.80) x 10~3 (2.58+0.80) x 102
Floww/ D,—» 0.011£0.000 ~ 73.5+13  2964+013  17.5+£02
Flow w/KLD 54412 100 + 32 3.17+0.20 3.15+0.19
RBD w/KLD  44+18 143 +22 3.0040.05 3.00+0.04
SNFw/KLD  0.16+0.11 N/A+N/A  8.71+3.36 9.58 +2.68

FAB w/o buffer 52.2+1.3  211.13+0.03  (6.284+0.33) x 1072  (2.66+0.90) x 10~
FAB w/ buffer 92.8+0.1 211.54+0.00 (3.42+0.45) x 1073 (2.51+0.39) x 103
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Take home messages

We have proposed FAB, a method that

Allows flows to fit multimodal distributions when training from energy only.

Key ingredients: a-divergence, AlS, bootstrap training, replay buffer and minimum
variance importance sampling distributions.

Only requires the target density, but no samples from the target.

First method to approximate Boltzmann distribution of alanine dipeptide without
using MD samples while using 100 x fewer target evaluations.
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Thanks!



