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● The probability of 3D atom locations in a molecule is given 
by the Boltzmann distribution:

             p(x) ∝ { -E(x) / (kT) },

   where E(x) is the energy, k and T are constants.

● It allows us to answer important questions:

Does a drug molecule bind to a target protein?

Many other applications as well!
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Animation source: D. E. Shaw Research.

Introduction and motivation



3

Based on slides by I. Murray 



4

Based on slides by I. Murray 



5

:

1 - 

2 - 

3 - 

Based on slides by I. Murray 



6



7



8



9

Based on slides by I. Murray 



Hamiltonian dynamics

Introduce velocity v carrying kinetic energy 

Some physics:

● Total energy or Hamiltonian: H(x,v) = E(x) + K(v)
● Frictionless ball rolling (x, v) → (x', v') satisfies H(x,v) = H(x', v')

● Ideal Hamiltonian dynamics are time reversible:
— reverse v and the ball will return to its start point
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Based on slides by I. Murray 



Hamiltonian Monte Carlo

Define a joint distribution as

where velocity v variables are independent and Gaussian distributed.

Markov Chain Transition Operator
1. Sample velocity v from its marginal
2. Simulate Hamiltonian dynamics then flip sign of velocity

— MH proposal q is deterministic and reversible q(x', v' | x, v) = q(x, v | x', v')
— Conservation of energy means p(x, v) = p(x', v')
— MH acceptance probability is 1
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Based on slides by I. Murray 



Leap-frog dynamics

A discrete approximation to Hamiltonian dynamics:

● H is not conserved
● dynamics are still deterministic and reversible
● Acceptance probability becomes min[1, exp{H(v', x') − H(v, x)}]
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Based on slides by I. Murray 



Hamiltonian Monte Carlo vs Metropolis Hastings
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https://www.youtube.com/watch?v=Vv3f0QNWvWQ

https://www.youtube.com/watch?v=Vv3f0QNWvWQ


● Often stuck into a few modes in multimodal distributions

● Generated samples are correlated and not independent!

● Samples from the past are not used to improve the generation of new samples

● Small step sizes needed to guarantee acceptance

● Very slow in practice!

— E.g. Sampling a molecular events may take years on a supercomputer
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Limitations of MCMC methods



Alternative: use deep generative models!

Neural 
network

Tractable 
noise

Approximate 
distribution

Target 
distribution

≈

They are neural networks that transform tractable random variables into complicated ones.

Their goal is to approximate a complicated target distribution (often the data distribution).

Once trained, they can often do tractable independent data sampling and density evaluation.
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Noé, Frank, et al. "Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning." Science 365.6457 (2019).



Invertible transformations of random variables

Slide source Eric Jang

p(x) dx = p(y) dy

Probability mass is preserved

y = f(x) = 2x + 1

16



Density of the transformed variables

p(y) dy = p(x) dx

p(y) = p(x) |dx / dy|

p(y) = p(x) / |dy / dx|

log p(y) = log p(x) - log |dy / dx|

Why  use absolute values ?

Slide source Eric Jang
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Higher dimensions

In higher dimensions, change in volume is the determinant of the Jacobian of f(x).

                                                                             

log p(y) = log p(x) - log |det J(f)(x)|

J(f)(x)

Slide source Eric Jang

Example: 

Sending a unit square (area = 1) to some 
parallelogram (area = ad - bc)
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Main idea behind normalizing flows

● Use a base distribution p(x) for which log p(x) is tractable and sampling is easy.

● Learn invertible function y = f(x) with associated inverse x = f-1(y).

● Model learned by maximum likelihood using log p(y) = log p(x) - log |det J(f)(x)|.

● Key challenge: keep computation of f, f-1 and log |det J(f)(x)| tractable.
● Often f obtained by combining multiple transformations or layers:

p(x) p(y)

Figure source: Jakub M. Tomczak.
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How to formulate invertible layers?

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using Real NVP. ICLR, 2017

Slide source: Jakub M. Tomczak.
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Example

Kingma, D.P., and Prafulla D. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS, 2018
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Neural spline flows
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● Uses concept of coupling layer

● But transform given by 
monotonic rational quadratic 
splines

● Multimodal transforms

● Analytic inverse

● Applicable to compact intervals 
and circular domains

Durkan et al. Neural spline flows. NeurIPS, 2019.

Figure source: Jonas Köhler, Andreas Krämer and Frank Noé



Example

23Figure source: Durkan et al. Neural spline flows. NeurIPS, 2019.

Neural spline flows with 
two coupling layers, 
each with K = 128 bins.



Molecules can be described via the spatial coordinates x, y, and z of each atom.

However, there are advantages in using internal coordinates such as

● bond lengths, e.g. b,

● bond angles, e.g. 𝜑,

● dihedral angles, e.g. 𝜓,

which naturally capture invariances to rotations and translations.

Internal coordinates for molecule representation
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Normalizing flows on circular coordinates
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Figure source: Stimper et al., normflows: A PyTorch Package for Normalizing Flows, arXiv:2302.12014, 2023

Neural spline flow with the following constraints:

● g(0) = 0, g(2𝛑) = 2𝛑, g '(x) > 0, g '(0) = g '(2𝛑)
● Avoid 0 and 2𝛑 being fixed points by doing phase translation with parameter 𝜙: x → x + 𝜙 mod 2𝛑

Rezende et al. Normalizing flows on circles, tori and spheres. In ICML, 2020.



Eliminate flow sampling bias with importance sampling
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Effective sample size of importance samples
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Logistic regression example:

q equal to Gaussian prior.

Weights can exhibit high variance, 
reducing the effective sample size 
(ESS) of the generated samples. Let us 
define                                , then

ESS is n when       = 1 / n and 1 if only 
one w_i takes a much larger value. 



When

It is easy to show that

Under some assumptions, variance will 
be reduced asymptotically as 1 / K.

Annealed importance sampling
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Neal, Radford M. "Annealed importance sampling." Statistics and computing 11 (2001): 125-139.



Example

29Slide source: https://random-walks.org/content/misc/ais/ais.html#id2

IS estimate,100 samples: 0.10 ± 13.309 →  Low ESS! AIS estimate,100 samples: 0.30 ± 2.218 →  High ESS!



Challenges fitting flows to multimodal distributions from energy

Training flows from energy can be done by minimizing:

However, this objective results in modes being missed.
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Alpha divergence

● Mode-seeking when 𝜶 <= 0

● Mass-covering when 𝜶 >= 1

● When 𝜶 = 2, it quantifies the variance of importance sampling weights:
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How to efficiently optimize the 𝜶 = 2 divergence?

Recall that                                              .

The optimal IS distribution for estimating                   is

We draw samples from g using AIS.

Assuming that                                      is normalized, we obtain

32

We call our method Flow Annealed 
Importance Sampling Bootstrap: FAB



Signal to noise ratio of gradient estimators
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How well do we estimate                                                                     by Monte Carlo?



A replay buffer to reuse AIS samples in FAB

● Generate M samples with AIS and add them to buffer:

a. Sample             from       obtaining also                         .
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A replay buffer to reuse AIS samples in FAB

● Generate M samples with AIS and add them to buffer:

a. Sample             from       obtaining also                         .

b. Obtain              and                    by running AIS with input             and                         .

c. Add              to buffer, together with their                    and                        .

● Process L minibatches with N samples drawn from the buffer:
a. Sample            from buffer with probability             and retrieve                              .  

b. Calculate AIS weight correction                                                                                                     . 

c. Update                   and                           in buffer to                                            and                      . 

d. Evaluate and optimize loss                                                            with ADAM. 
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2D mixture of Gaussians problem

Multimodal p and flow q 
with pathological 
initialization: samples 
concentrate in small region.

Coupling flow with 15 
layers. K=1 intermediate 
AIS distributions with MCMC 
transitions given by 1 
Metropolis-Hastings step.
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Neural Spline Flows 
with 12 layers. Some 
bond angles treated as 
circular coordinates.

K = 8 intermediate AIS 
distributions.

Hamiltonian Monte 
Carlo with 4 Leapfrog 
steps as AIS transition 
operator.

Results for alanine dipeptide



Results for alanine dipeptide
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We have proposed FAB, a method that

● Allows flows to fit multimodal distributions when training from energy only.

● Key ingredients: α-divergence, AIS, bootstrap training, replay buffer and minimum 
variance importance sampling distributions.

● Only requires the target density, but no samples from the target.

● First method to approximate Boltzmann distribution of alanine dipeptide without 
using MD samples while using 100 × fewer target evaluations.
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