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Outline

• why?
• defining Gaussian Processes
• learning and inference (1 slide)
• practice: hyperparameters
• Occam’s Razor and the marginal likelihood
• covariance functions
• conclusions
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Gaussian Processes: what and why?

Gaussian Processes (GPs) marry two of the most ubiqutous and useful concepts in
science, engineering and modelling: probability theory and functions.

GPs are probability distributions over functions.

• GPs are the only practical class of probability distributions over functions
• GPs fit naturally within the Bayesian inference.
• The GP framework is principled, practical and powerful.

Rasmussen (Ellis 2023 Summer School) Gaussian Processes July 17-22nd, 2023 3 / 26



Distribution over Functions

Key idea: use a separate random variable to represent that value of the function
f (x) for each possible input x.

I will use plots like this, to illustrate (marginal) distributions over functions:
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The function value at a specific input is characterised by a Gaussian.
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The Gaussian Distribution

The univariate Gaussian distribution is given by

p(x|µ, σ2) = N(µ, σ2) = (2πσ2)−1/2 exp
(
−

1
2σ2 (x− µ)2

)
The multivariate Gaussian distribution for D-dimensional vectors is given by

p(x|µ, Σ) = N(µ, Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2 (x− µ)>Σ−1(x− µ)
)

where µ is the mean vector and Σ the covariance matrix.
Rasmussen (Ellis 2023 Summer School) Gaussian Processes July 17-22nd, 2023 5 / 26



From single to multiple function values

How do we generalize the specification of the value at a single input to multiple
function values?

You might think you simply repeat the specification of mean µ and variance σ2

for each possible input.

That’s almost right, but not quite; the problem is the distinction between
marginals and joints.
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Conditionals and Marginals of a Gaussian, pictorial

 

 

joint Gaussian
conditional

 

 

joint Gaussian
marginal

Both the conditionals p(x|y) and the marginals p(x) of a joint Gaussian p(x, y) are
again Gaussian.
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Conditionals and Marginals of a Gaussian, algebra

If x and y are jointly Gaussian

p(x, y) = p
([ x

y

])
= N

([ a
b

]
,
[ A B
B> C

])
,

we get the marginal distribution of x, p(x) by

p(x, y) = N
([ a

b

]
,
[ A B
B> C

])
=⇒ p(x) = N(a, A),

and the conditional distribution of x given y by

p(x, y) = N
([ a

b

]
,
[ A B
B> C

])
=⇒ p(x|y) = N(a+BC−1(y− b), A−BC−1B>),

where x and y can be scalars or vectors.
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From single to multiple and to infinitely many

For the value of the function f1 = f (x1) at a single location x1 we use a scalar
Gaussian f1 ∼ N(µ, σ2).

For the joint function f values at two locations x1, x2 a multivariate Gaussian
f ∼ N(µ, Σ)

etc

For the joint distribution for the entire function f at all input locations, we use a
Gaussian Process f ∼ N(m, k).

Here, f ,m and k are functions.

A function ' infinitely long vector. The index set into a vector are 1, 2, . . .D, the
index set into a function f (x) are the inputs x.

The mean function m(x) is a function of a single argument x, whereas the
covariance function k(x, x ′) is a function of two arguments.
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What is a Gaussian Process?

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. �

We write
f ∼ N(m, k) (1)

which is fully specified by it’s mean function m and covariance function k.

The only meaning we assign to the GP is that for any finite set of inputs x, the
corresponding

f = f (x) ∼ N(µ = m(x), Σ = k(x, x)). (2)

The covariance function must be positive definite.
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

f ∼ N
(
m, k

)
, where m(x) = 0, and k(x, x ′) = exp(− 1

2 (x− x ′)2).

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f (x1), f (x2), . . . , f (xN))>, for which

f ∼ N(0, Σ), where Σij = k(xi, xj).

Draw a random value of f from the distribution as a function of the
corresponding x values
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Joint Generation

To generate a random sample from a D dimensional joint Gaussian with
covariance matrix K and mean vector m: (in octave or matlab)

z = randn(D,1);
y = chol(K)'*z + m;

where chol is the Cholesky factor R such that R>R = K.

Thus, the covariance of y is:

E[(y−m)(y−m)>] = E[R>zz>R] = R>E[zz>]R = R>IR = K.
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Learning or Inference1 in a Gaussian Process

Let’s say you had a number of observations (xi, yi), where i = 1, . . . , n, collectively
x and y, and a Gaussian likelihood function with noise variance σ2

noise

p(y|f) = N(y|f, σ2
noiseI) ∝ exp(− 1

2

n∑
i=1

(fi − yi)2/σ2
noise),

With a GP prior the joint distribution of function f and observations y is

p(f , y) = p(f ) p(y|f) = p(y)p(f |y)

= N(f |m, k)N(y|f) = Z|yN(f |m|y, k|y),

with posterior

p(f |y) ∼ N(f |m|y, k|y),

where
{
m|y(x) = m(x) + k(x, x)[k(x, x) + σ2

noiseI]
−1(y−m(x)),

k|y(x, x ′) = k(x, x ′) − k(x, x)[k(x, x) + σ2
noiseI]

−1k(x, x ′),

and log marginal likelihood

logZ|y = logN(y|m(x), K(x, x) + σ2
noiseI).

1throughout, we use the statistical meaning of the word inference, not the neural network one
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Prior and Posterior
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Marginal distributions and samples of the joint, from the prior and the posterior
given 5 close to noise free observations.
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Hyperparameters: properties of covariance functions

The covariance function which we have seen before

k(x, x ′) = exp(− 1
2 (x− x ′)2),

encodes that f (x) and f (x ′) have large covariance if x is close to x ′, but it doesn’t
really quantify what is meant by close to?

We can parameterize the covariance function using hyperparameters such as `, in

k(x, x ′) = exp
(
−

(x− x ′)2

2`2
)
.

Learning in Gaussian process models involves finding

• the form of the covariance function, and
• any unknown (hyper-) parameters θ.
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Example: Fitting the length scale parameter

Parameterized covariance function: k(x, x ′) = v2 exp
(
−

(x− x ′)2

2`2
)
.
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Characteristic Lengthscales

The posterior GP is plotted for 3 different length scales (the blue curve
corresponds to optimizing the marginal likelihood). Notice, that an almost exact
fit to the data can be achieved by reducing the length scale – but the marginal
likelihood does not favour this!

Rasmussen (Ellis 2023 Summer School) Gaussian Processes July 17-22nd, 2023 17 / 26



The Gaussian process marginal likelihood

Log marginal likelihood has a closed form

logZ|y = log p(y|x)

= −
1
2
(y−m)>[K + σ2

nI]
−1(y−m) −

1
2

log |K + σ2
nI|−

n
2

log(2π)

and is the combination of a data fit term and complexity penalty. Occam’s Razor
is automatic.
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How can Bayes rule help find the right model
complexity? Marginal likelihoods and Occam’s Razor

too simple

too complex

"just right"

All possible data sets
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An illustrative analogous example

Imagine the simple task of fitting the variance, σ2, of a zero-mean Gaussian to a
set of n scalar observations.

The log likelihood is log p(y|µ, σ2) = − 1
2y

>Iy/σ2− 1
2 log |Iσ2|− n

2 log(2π)
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Model Selection, Hyperparameters, and ARD

We need to determine both the form and parameters of the covariance function.
We typically use a hierarchical model, where the parameters of the covariance are
called hyperparameters.

A very useful idea is to use automatic relevance determination (ARD) covariance
functions for feature/variable selection, e.g.:

k(x, x ′) = v20 exp
(
−

D∑
d=1

(xd − x ′
d)

2

2v2d

)
, hyperparameters θ = (v0, v1, . . . , vd, σ

2
n).
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Feed Forward Neural Networks
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output weights

A feed forward neural network implements the function:

f (x) =

H∑
i=1

vi tanh(
∑
j

uijxj + bj)
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Limits of Large Neural Networks

Sample random neural network weights from a appropriately scaled Gaussian
prior.
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Note: The prior on the neural network weights induces a prior over functions.
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Function drawn at random from a Neural Network covariance function

k(x, x ′) =
2
π

arcsin
( 2x>Σx ′√

(1+ x>Σx)(1+ 2x ′>Σx ′)

)
.
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Composite covariance functions

We’ve seen examples of covariance functions.

Covariance functions have to be possitive definite.

One way of building covariance functions is by composing simpler ones in
various ways

• sums of covariance functions k(x, x ′) = k1(x, x ′) + k2(x, x ′)

• products k(x, x ′) = k1(x, x ′)× k2(x, x ′)

• other combinations: g(x)k(x, x ′)g(x ′)

• etc.
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Conclusions

GPs are a small but powerful generalisation of the Gaussian to functions; we can

• calculate marginals
• sample from the joint marginals
• update when data is observed

GPs are the powerful, principled and practical way to do inference about
functions

Important things that I haven’t spoken about

• library of covariance functions
• non-Gaussian likelihoods
• computational constraints: sparse approximations

Want to know more:
Rasmussen and Williams (2006): Gaussian Processes for Machine Learning
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