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“Nature Cannot Be Fooled” (Richard Feynman)

“A logarithmic plot suggested a straight line, so it was supposed that the erosion
varied as the .58 power of the heat, the .58 being determined by a nearest fit.
At any rate, adjusting some other numbers, it was determined that the model
agreed with the erosion (to depth of one-third the radius of the ring).
There is nothingmuch so wrong with this as believing the answer!
Uncertainties appear everywhere…

When using amathematical model, careful attentionmust be given to
uncertainties in themodel.”

Richard Feynman— excerpt from Appendix F of the Report of the Presidential
Commission on the Space Shuttle Challenger Accident (1986).
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Dawn of Probabilistic Inference

Thomas Bayes’ original question, published in 1763:
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“Common Sense Reduced to Calculus”

“It is seen in this essay that the theory of probabilities
is at bottomonly common sense reduced to calculus; it
makes us appreciate with exactitude that which exact
minds feel by a sort of instinct without being able oft
times to give a reason for it. …we shall see that there is
no sciencemoreworthyofourmeditations, and thatno
moreuseful one couldbe incorporated in the system
of public instruction.”

Pierre-Simon Laplace — from the closing paragraph of
“A Philosophical Essay on Probabilities” (1814)
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Probability in Machine Learning

“Finally, as long as the automaton is running, its very
rules of operation are susceptible to some change on the
basis of the datawhich havepassed through its receptors
in the past, and this is not unlike the process of learning.”

Norbert Wiener—Cybernetics (1948)
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Probability in Machine Learning

“I referred her toNorbert Wiener, Cybernetics, 1948. Of
course, I wasn’t referring to the robots depicted in illus-
trated papers, but to the lightning calculating machine,
also known as the electronic brain ... because it has a
greaterpower than thehumanbrain tograsp informa-
tion and assess its probability value. Above all, how-
ever, the machine has no feelings, it feels no fear and no
hope, which only disturb, it has no wishes with regard
to the result, it operates according to the pure logic of
probability.”

Max Frisch— excerpt from the novel “Homo Faber” (1957)
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Separation of Inference and Decision
There could be trouble ahead …
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Separation of Inference and Decision
More appropriate …
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Separation of Inference and Decision
More appropriate … ?
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Probability and the Art of Decision Making
Scientific view

“And, at least at the intuitive level, we have become rather good at this
extended logic, and rather systematic. Before deciding what to do, our
intuition organizes the preliminary reasoning into stages:
(I) Try to foresee all the possibilities that might arise;
(II) Judgehow likely each is, basedoneverything youcan seeandall your
past experience;
(III) In the light of this, judge what the probable consequences of various
actions would be;
(IV) Nowmake your decision.”

E. T. Jaynes— from “Bayesian Methods: General Background” (1984)
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Probability and the Art of Decision Making
Historical views

“From the earliest times this process of plausible reasoning preceding
decisions has been recognized. Herodotus, in about 500 BC, discusses
the policy decisions of the Persian kings. He notes that a decision was
wise, even though it led to disastrous consequences, if the evidence
at hand indicated it as the best one to make; and that a decision was
foolish, even though it led to the happiest possible consequences, if it
was unreasonable to expect those consequences.”

E. T. Jaynes— from “Bayesian Methods: General Background” (1984)
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Probability and the Art of Decision Making
Historical views

“I may bewrong. It is at best but a guess, and theworld attacheswisdom
to him that guesses right.”

Horatio Nelson— extract from a letter to Sir A. J. Ball (1804)
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Probability and the Art of Decision Making
Cultural views

“I tried to do the latter and I failed. But I don’t admit that my failure
proved my view to be a wrong one, or that my success would have
made it a right one; though that’s howweappraise such attempts nowa-
days — I mean, not by their essential soundness, but by their accidental
outcomes.”

Thomas Hardy— from the novel “Jude the Obscure” (1895)
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Bayesian Probability — What and Why?
What is it?

“Bayesian” implies that the rules of probability may be applied to model all
sources of uncertainty
By contrast, in orthodox or frequentist statistics, only intrinsically random
variables are treated probabilistically
For example, probability can represent the degree of belief in, or
plausibility of, a wide range unknowns, such as:

the outcome of a flip of a coin
whether it will rain tomorrow
the values a model parameter might take
the choice of model itself
the value of a measured physical constant (e.g. the mass of the moon)
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Bayesian Probability — What and Why?
Why does it matter?

The contrasting view of probability is more than a philosophical distinction!

Upside
The Bayesian framework offers a range of highly advantageous features when
undertaking machine learning (see shortly)

Downside
But there is a major drawback: many required calculations are problematic to
undertake andmust be approximated (see later, under “voodoo”)
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One Historical View on Bayesian Statistical Inference

“The subject is difficult. Some argue that this is a reason for not using
it. But it is always harder to adhere to a strict moral code than to indulge
in loose living … Every statistician would be a Bayesian if he took the
trouble to read the literature thoroughly andwashonest enough toadmit
that he might have been wrong.”

DennisV. Lindley—commenton“Why Isn’t EveryoneaBayesian?” (Bradley
Efron) in The American Statistician, No. 40, 1986.
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Bayesian Inference in One Slide

If 𝐷 is some observed data, and 𝛉 encapsulates all the unknowns associated
with a model𝑀 intended to describe that data, then Bayesian inference is:

𝑝(𝛉|𝐷,𝑀) = 𝑝(𝐷|𝛉,𝑀) 𝑝(𝛉|𝑀)𝑝(𝐷|𝑀)

Posterior
Likelihood Prior

Marginal Likelihood or “Evidence”

𝑝(𝐷|𝑀) = ∫𝑝(𝐷|𝛉,𝑀) 𝑝(𝛉|𝑀) 𝑑𝛉
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Seven Pillars of Bayesian Wisdom

Generic
0. Fully Probabilistic Predictions

Priors & Posteriors
1. A Consistent Approach to Modelling All Uncertainty
2. Natural Adaptation to “Big” and “Small” Data
3. Intrinsic Handling of Streaming Data
4. Desired Properties are Incorporated in a Principled Way

Marginalisation
5. Predictions are Qualified and Informative
6. Irrelevant Variables are Factored Out
7. Implicit Implementation of Ockham’s Razor
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An Artificial Example: Efficient Image Decomposition (1)

Consider modelling 16 × 16 images synthesised by noiselessly superposing
randomly sized and located rectangular “blocks”:
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An Artificial Example: Efficient Image Decomposition (2)

Model the image with a 256-element “integral” basis:

Any “block” can be perfectly modelled by four appropriately-weighted
integral functions:
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“Building block” (Image Approximation) Demo

The demo compares an efficient sequential algorithm:
Order-Recursive Matching Pursuit (ORMP) with
an alternative Bayesian approach…
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Bayesian Linear Regression

Example data set 𝐭 = (𝑡1, … , 𝑡𝑁) of𝑁 = 15 points generated from the function
𝑓(𝑥) = sin(𝑥)with added Gaussian noise of 𝜎 = 0.25

Functional model is a
linearly-weighted sum of𝑀
fixed basis functions:

̂𝑓(𝑥; 𝐰) =
𝑀
∑
𝑚=1

𝑤𝑚𝜙𝑚(𝑥)

Basis functions are Gaussian
(RBF), data-centred, so𝑀 = 15:

𝜙𝑚(𝑥) = exp {−(𝑥 − 𝑥𝑚)2/𝑟2}
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The Bayesian Linear Regression Framework

Likelihoodmodel (Gaussian, as usual):

𝑝(𝐭|𝐰, 𝜎2) = (2𝜋𝜎2)−𝑁/2
𝑁
∏
𝑛=1

exp {−
[𝑡𝑛 − ̂𝑓(𝑥𝑛; 𝐰)]

2

2𝜎2 }

Prior (Gaussian, conjugate, incorporating hyper-parameter 𝛼):

𝑝(𝐰|𝛼) =
𝑀
∏
𝑚=1

(2𝜋)−1/2𝛼1/2 exp {−𝛼2𝑤
2
𝑚}

Hyper-priors over 𝛼 and 𝜎2:
uniform over a logarithmic scale, or,
Gamma(𝑎, 𝑏), where 𝑎 and 𝑏 are fixed small values
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Strictly Bayesian: the Ideal Framework

We should proceed by computing the joint posterior over all unknowns,
which from Bayes’ rule, is:

𝑝(𝐰, 𝛼, 𝜎2|𝐭) = 𝑝(𝐭, 𝐰, 𝛼, 𝜎
2)

𝑝(𝐭) = 𝑝(𝐭|𝐰, 𝜎
2) 𝑝(𝐰|𝛼) 𝑝(𝛼) 𝑝(𝜎2)

𝑝(𝐭)

The highlighted normalising factor is the “fully marginalised” likelihood:

𝑝(𝐭) = ∫𝑝(𝐭|𝐰, 𝜎2) 𝑝(𝐰|𝛼) 𝑝(𝛼) 𝑝(𝜎2) 𝑑𝐰 𝑑𝛼 𝑑𝜎2

It is almost always analytically intractable!
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Approximation & The Analytic Roadblock

Problem:
We cannot compute 𝑝(𝐭) or 𝑝(𝐰, 𝛼, 𝜎2|𝐭) in closed form

Compromise “solution”:
1 First perform any analytically computable integrations, then
2 Approximate remaining terms, perhaps by:

Stochastic techniques (e.g. Hamiltonian Monte Carlo sampling)
Variational techniques: e.g. 𝑝(𝐰, 𝛼, 𝜎2|𝐭) ≈ 𝑄𝐰(𝐰) 𝑄𝛼(𝛼) 𝑄𝜎2(𝜎2)
Type-II maximum likelihood
Laplace’s method

Approximation is the “voodoo” of Bayesianmachine learning
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Type-II Maximum Likelihood for Bayesian Regression

The desired posterior, 𝑝(𝐰, 𝛼, 𝜎2|𝐭), can be written as:

𝑝(𝐰, 𝛼, 𝜎2|𝐭) ≡ 𝑝(𝐰|𝐭, 𝛼, 𝜎2) 𝑝(𝛼, 𝜎2|𝐭)

First term is the weight posterior, derived from Bayes’ rule:

𝑝(𝐰|𝐭, 𝛼, 𝜎2) = 𝑁(𝐰|𝛍, 𝚺)
with

𝚺 = 𝜎2(𝚽T𝚽 + 𝜎2𝛼𝐈)−1

𝛍 = 𝚺𝚽T𝐭/𝜎2
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Type-II Maximum Likelihood

Second term 𝑝(𝛼, 𝜎2|𝐭) is intractable: we will approximate it (very
coarsely!) with a 𝛿-function at its mode

We findmost probable values 𝛼̂𝑀𝑃 and 𝜎̂
2
𝑀𝑃 which maximise:

𝑝(𝛼, 𝜎2|𝐭) = 𝑝(𝐭|𝛼, 𝜎
2) 𝑝(𝛼) 𝑝(𝜎2)
𝑝(𝐭)

If we assume flat uninformative priors over log 𝛼 and log 𝜎, then we
equivalently maximise 𝑝(𝐭|𝛼, 𝜎2)
𝑝(𝐭|𝛼, 𝜎2) is themarginal likelihood (or “evidence”)
This procedure is known as Type-II maximum likelihood
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The Marginal Likelihood (1)

To find 𝛼̂𝑀𝑃 and 𝜎̂
2
𝑀𝑃 wemaximise:

𝑝(𝐭|𝛼, 𝜎2) = ∫𝑝(𝐭|𝐰, 𝜎2) 𝑝(𝐰|𝛼) 𝑑𝐰

= (2𝜋)−
𝑁
2 |𝜎2𝐈 + 𝛼−1𝚽𝚽T|−

1
2 exp {−12𝐭

T(𝜎2𝐈 + 𝛼−1𝚽𝚽T)−1𝐭}

This is a zero-mean Gaussian distribution over the single𝑁-dimensional
dataset vector 𝐭 with covariance matrix:

𝜎2𝐈 + 𝛼−1𝚽𝚽T

It gives us a probability for the entire data set, conditional on 𝛼 and 𝜎2
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The Marginal Likelihood (2)

Computing the marginal likelihood is straightforward
it’s just a Gaussian p.d.f., albeit potentially high-dimensional

Given that, we can evaluate 𝑝(𝐭|𝛼, 𝜎2) over a range of values of 𝛼 and 𝜎2

Thenmake our predictions using themost probable values 𝛼̂𝑀𝑃 and 𝜎̂
2
𝑀𝑃

This is not “strictly morally” Bayesian, but can often be useful in practice
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Marginal Likelihood to Estimate Single Hyper-parameter 𝛼̂𝑀𝑃
Penalised least-squares estimation
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Marginal Likelihood to Estimate Single Hyper-parameter 𝛼̂𝑀𝑃
Bayesian (Type-II) estimation
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Ockham’s Razor

“Pluralitas non est ponenda sine neccesitate.”

William of Ockham— 14th Century

Literally: “entities should not be multiplied unnecessarily”
In the context of machine learning: models should be nomore complex
than is sufficient to explain the data
The Bayesian procedure is effectively implementing “Ockham’s Razor” by
assigning lower probability both to models that are too simple and too
complex — how?
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Preference for the “Just Right” Model
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Type-II Bayesian Model (Based on 𝛼̂𝑀𝑃 and 𝜎̂2𝑀𝑃)
Posterior mean predictor (15 data points)
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Type-II Bayesian Model (Based on 𝛼̂𝑀𝑃 and 𝜎̂2𝑀𝑃)
Contribution of individual basis functions
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Type-II Bayesian Model (Based on 𝛼̂𝑀𝑃 and 𝜎̂2𝑀𝑃)
Contribution of individual basis functions — 100 data points!
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Inferring Parsimonious Models

It is often advantageous to fit a linear model:

̂𝑓(𝑥; 𝐰) =
𝑀
∑
𝑚=1

𝑤𝑚𝜙𝑚(𝑥)

such thatmany𝑤𝑚 are set to zero (while retaining accuracy!)
A model with few non-zero parameters is generally referred to as a
parsimonious, or sparse, model
Sparse (non-Bayesian) models have been historically popular:

The Support Vector Machine (SVM)
— sparsity via 𝐿2 regularisation (‖𝐰‖2) and geometric constraints
The Least Absolute Shrinkage and Selection Operator (LASSO)
— via 𝐿1 regularisation (𝜆‖𝐰‖1) and constrained optimisation
Compressive Sensingmethods — via 𝐿1 regularisation (mainly)
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The Bayesian Approach To Parsimonious Inference
Express a preference for sparse model solutions via an appropriate choice of prior

There are a number of possible candidates:
The Laplace distribution — analogous to 𝐿1 regularisation

𝑝(𝑤|𝛼) ∝ exp {−𝛼‖𝑤‖}

The Spike and Slab distribution — amixture of two separate (e.g. Gaussian)
distributions, one broad and one very narrow

𝑝(𝑤|𝛼0, 𝛼1, 𝛾) ∝ 𝛾. exp {−𝛼0|𝑤|2} + (1 − 𝛾). exp {−𝛼1|𝑤|2}

The Logit-Normal Continuous Analogue of the Spike-and-Slab (LN-CASS)
The Student-𝑡 distribution (indirectly)

𝑝(𝑤|𝑎, 𝑏) ∝ (𝑏 + 𝑤
2

2 )
− (𝑎+ 12 )
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A Bayesian Prior for Sparse Models

Previous regression prior (incorporating single hyper-parameter 𝛼):

𝑝(𝐰|𝛼) =
𝑀
∏
𝑚=1

(2𝜋)−1/2𝛼1/2 exp {−𝛼2𝑤
2
𝑚}

Sparse Prior (𝑀 hyper-parameters 𝛼1, … , 𝛼𝑀):

𝑝(𝐰|𝛼1, … , 𝛼𝑀) =
𝑀
∏
𝑚=1

(2𝜋)−1/2𝛼𝑚1/2 exp {−
𝛼𝑚
2 𝑤2𝑚}

Posterior over weights is: 𝑝(𝐰|𝐭, 𝐀, 𝜎2) = 𝑁(𝛍, 𝚺)with
𝛍 = (𝚽T𝚽 + 𝜎2𝐀)−1𝚽T𝐭
𝚺 = 𝜎2(𝚽T𝚽 + 𝜎2𝐀)−1

where 𝐀 = diag (𝛼1, … , 𝛼𝑀), instead of 𝐀 = 𝛼𝐈 previously
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Why does this Prior Favour Sparse Solutions?

The prior over weights appears to be Gaussian, but…
… It is a hierarchical prior, parameterised by 𝛼𝑚, and wemust marginalise
to see its true form

𝑝(𝑤𝑚) = ∫𝑝(𝑤𝑚|𝛼𝑚) 𝑝(𝛼𝑚) 𝑑𝛼𝑚

An appropriate hyper-prior for 𝛼𝑚 (a scale parameter) is a Gamma
distribution (log-uniform is a special case)
For 𝑝(𝛼𝑚) = Gamma(𝛼𝑚|𝑎, 𝑏), the marginal 𝑝(𝑤𝑚) is a Student-t

𝑝(𝑤𝑚) =
𝑏𝑎Γ(𝑎 + 12 )

(2𝜋)
1
2Γ(𝑎)

(𝑏 + 𝑤2𝑚/2)
−(𝑎+12 )

If 𝑎 = 𝑏 = 0 (log-uniform case), then 𝑝(𝑤𝑚) ∝ 1/|𝑤𝑚|
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Priors Compared
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Priors Compared
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Type-II Maximum Likelihood for the Sparse Bayesian Model

Themarginal likelihood is given by:

𝑝(𝐭|𝐀, 𝜎2) = ∫𝑝(𝐭|𝐰, 𝜎2) 𝑝(𝐰|𝐀) 𝑑𝐰

= (2𝜋)−
𝑁
2 |𝐂|−

1
2 exp {−12𝐭

T𝐂−1𝐭}

A Gaussian processwith covariance matrix:

𝐂 = 𝜎2𝐈 + 𝚽𝐀−1𝚽T = 𝜎2𝐈 +
𝑀
∑
𝑚=1

𝛼−1𝑚 𝛟𝑚𝛟T𝑚

It gives us a probability for the entire data set, conditional on𝑀 values of
𝛼1, … , 𝛼𝑀 along with 𝜎2
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Type-II Maximum Likelihood for the Sparse Bayesian Model

How do we estimate all 𝛼1, … , 𝛼𝑀? (And 𝜎2?)
It should be clear that the earlier empirical approach is impractical!
Possible algorithmic (iterative) approaches for maximising log 𝑝(𝐭|𝐀, 𝜎2):

off-the-shelf non-linear optimisation (gradient-based)
the expectation-maximisation (EM) algorithm
variational approximations𝑄𝛼(𝛼𝑚)

These work, but are slow to converge
Alternative: exploit the specific properties of log 𝑝(𝐭|𝐀, 𝜎2) to derive an
efficient co-ordinate (gradient) ascent algorithm
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Properties of the Marginal Likelihood

What does the function log 𝑝(𝐭|𝛼1, … , 𝛼𝑀) look like?
As a function of a single hyper-parameter 𝛼𝑖:

Factors 𝑞𝑖 and 𝑠𝑖 are a function of all other 𝛼𝑚, but not 𝛼𝑖:
“Quality factor”: 𝑞𝑖 = 𝛟

T
𝑖𝐂−1−𝑖 𝐭

“Sparsity factor”: 𝑠𝑖 = 𝛟
T
𝑖𝐂−1−𝑖 𝛟𝑖

with: 𝐂−𝑖 = 𝜎2𝐈 +∑
𝑚≠𝑖

𝛼−1𝑚 𝛟𝑚𝛟T
𝑚
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A Sparse Sequential Learning Algorithm Sketch

1 Initialise all 𝛼𝑚 = ∞: start with an “empty” model

2 Compute all 𝑞𝑚 and 𝑠𝑚 factors
3 Select a candidate basis function 𝜙𝑖(𝐱) from the set of all𝑀
4 Examine quality and sparsity factors, 𝑞𝑖 and 𝑠𝑖:

If 𝑞2𝑖 > 𝑠𝑖 and 𝛼𝑖 < ∞: re-estimate 𝛼𝑖 = 𝑠
2
𝑖 /(𝑞2𝑖 − 𝑠𝑖)

If 𝑞2𝑖 > 𝑠𝑖 and 𝛼𝑖 = ∞: add 𝜙𝑖 to the model with 𝛼𝑖 = 𝑠
2
𝑖 /(𝑞2𝑖 − 𝑠𝑖)

If 𝑞2𝑖 ≤ 𝑠𝑖 and 𝛼𝑖 < ∞: delete 𝜙𝑖 from themodel (set 𝛼𝑖 = ∞)

5 If not converged, return to Step 2
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A Sparse Sequential Learning Algorithm Sketch
In pictures
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Example on Synthetic Data (𝑁 = 15)
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Example on Synthetic Data (𝑁 = 100)
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Example on Synthetic Data (𝑁 = 100)
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Sparse Modelling in Real-World Applications
Prediction of disease based on gene expression micro-array data

Logistic regressionmodel: 100% accurate
å needs expression data from all 32 genes
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Sparse Modelling in Real-World Applications
Prediction of disease based on gene expression micro-array data

Sparse Bayesianmodel: 100% accurate
å needs knowledge of only two genes

Correctly distinguishes 100% of CLL and MBL cases from normal polyclonal and
mono/oligoclonal B lymphocytes.
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Sparse Modelling in Real-World Applications
Localisation of radioactive sources using a Compton Camera: Inverse Modelling

A “Compton camera” setup, for the resolving of Gamma rays:
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Sparse Modelling in Real-World Applications
Localisation of radioactive sources using a Compton Camera
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Sparse Modelling in Real-World Applications
Localisation of radioactive sources using a Compton Camera
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Sparse Modelling in Real-World Applications
Localisation of radioactive sources using a Compton Camera

This is an inverse modelling problem
The sparse solution allows the gamma
radiation source(s) to be localised by
angle
More details: “Machine learning
techniques applied to Compton
cameras” at Applied Inverse Problems,
Göttingen, September 2023
Data and illustrations courtesy of:
Hellma Materials GmbH and
Hochschule Zittau/Görlitz

48 / 55



Sparse Modelling in Real-World Applications
Prediction of nuclear reactor core burn-up based on nuclide samples (Dayman et al.)
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Could The Sparse Bayesian Algorithm Be Too “Greedy”?

At every step, we updated the basis function 𝜙𝑚(𝐱) that most increased the
objective function log 𝑝(𝐭|𝛼1, … , 𝛼𝑀)
A number of (non-Bayesian) algorithms work in a very similar way —
e.g. orthogonal matching pursuit (in scikit-learn)
Such algorithms are termed greedy: they are efficient, but “early”
additions can be significantly sub-optimal
Return to the example…
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Example: Building Blocks Revisited

The previous demo was perhaps too easy?
Let’s make things tougher: include a basis of Gaussians centred on every
pixel (256), each with four different widths:

This makes 1280 basis functions, of which 80% are “confusers”
the basis is over-complete, and so…
the problem is under-constrained
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Demo

“Building block” demo (reloaded)…
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High-Level Summary

Appropriate integration of probability in real-world applications is crucial
to handle multiple sources of uncertainty
to enable crucial separation of inference and decision-making

Bayesian probabilistic approaches can offer numerous advantages
we generally try to “adhere to a strict moral code”…
…but can obtain useful results with a little judicious “loose living”
the “art” is in the choice of approximations and howwe apply them
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And Finally, Coming Soon …
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Oppenheimer on “Style”

“Theproblemof doing justice to the implicit, the imponderable, and theunknown
is of course not unique in politics. It is always with us in science, it is with us in the
most trivial of personal affairs, and it is one of the great problems of writing and
of all forms of art. The means by which it is solved is sometimes called style. It is
style which complements affirmation with limitation and with humility; it is style
which makes it possible to act effectively, but not absolutely; it is style which, in
the domain of foreign policy, enables us to find a harmony between the pursuit of
ends essential to us, and the regard for the views, the sensibilities, the aspirations
of those to whom the problem may appear in another light; it is style which is
thedeference that actionpays touncertainty; it is above all style throughwhich
power defers to reason.”

J. Robert Oppenheimer— from “The Open Mind” lecture collection (1955)
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