

Approximate Inference: An Intro

Yingzhen Li

yingzhen.li@imperial.ac.uk

The Central Computation for Inference

- Inference: infer the unknowns
 - Unobserved/latent variables in the model
 - Quantities depending on the latent variables in the model

(For discrete probability measures, integration becomes discrete sum.)

• The central equation for inference:

$$\int F(\theta) \pi(\theta) d\theta$$

"What is the prediction distribution of the test output given a test input?"

 $F(\theta) = p(y|x, \theta), \pi(\theta) = p(\theta \mid D),$ D = observed datapoints

• The central equation for inference:

$\int F(\theta) \pi(\theta) d\theta$

"What is the mean of this distribution?"

 $F(\theta) = \theta$, $\pi(\theta)$ can be complicated and high dimensional

• The central equation for inference:

$$\int F(\theta) \pi(\theta) d\theta$$

"What is the probability of generating this image?"

$$F(\theta) = \delta(NN(\theta) = x_0), \pi(\theta) = N(0, I)$$

• The central equation for inference:

$\int F(\theta) \pi(\theta) d\theta$

"What is the weather forecast for tomorrow?"

Answering this in a Bayesian way: θ : forecasting simulator settings D: historical weather record $F(\theta) = Simulator(\theta), \pi(\theta) = p(\theta \mid D)$

Nature laughs at the difficulties of integration.

--Pierre-Simon Laplace

Gordon and Sorkin. The Armchair Science Reader. New York 1959

Integration in Bayesian Computation

Approximate Inference

• Central task: approximate $\pi(\theta)$

- Different from fitting a model p to data with dataset $D \sim p_{data}$:
 - Cannot directly sample from $\pi(\theta)$
 - Sometimes know the form of unnormalized density for $\pi(\theta)$
 - Sometimes even the unnormalized density of $\pi(\theta)$ is expensive to compute

Approximate Inference

• Central task: approximate $\pi(\theta)$

Approximate distribution design

Algorithm for fitting $q(\theta)$ to $\pi(\theta)$

(Assumed $\int F(\theta)q(\theta)d\theta$ can be computed or approximated efficiently.)

min $Loss(q(\theta), \pi(\theta))$

Optimisation-based approaches

Sampling-based approaches

Tutorial Outline

Basics

Variational inference

Scalable variational inference

Monte Carlo techniques

Amortized inference

Advances

q distribution design Optimization objective design Future directions

Bayesian Inference

Re-use of the image for any other purpose is not allowed

Variational Inference (VI)

The posterior

The variational distribution

 $q_{\phi}(\theta)$

 $p(\theta|D) = p(D|\theta)p(\theta)/p(D)$

Kullback-Leibler (KL) divergence

Kullback-Leibler Divergence

$$KL[q(\theta)||p(\theta)] = -\int q(\theta) \log \frac{p(\theta)}{q(\theta)} d\theta = E_{q(\theta)}[\log \frac{p(\theta)}{q(\theta)}]$$

- When p = q, KL is 0
- Otherwise, KL > 0
- It measures how similar are these two distributions

Let's Derive the Objective of VI

• Minimize $KL[q(\theta)||p(\theta|D)]$

$$KL[q(\theta)||p(\theta|D)] = -E_{q(\theta)}\left[\log \frac{p(\theta|D)}{q(\theta)}\right]$$

$$= -E_{q(\theta)} \left[\log \frac{p(\theta, D)}{p(D)q(\theta)} \right] = -E_{q(\theta)} \left[\log \frac{p(\theta, D)}{q(\theta)} - \log p(D) \right]$$
$$= \log p(D) - E_{q(\theta)} \left[\log \frac{p(\theta, D)}{q(\theta)} \right]$$

 $\begin{bmatrix} \log p(D) & Lq(\theta) \\ \log q(\theta) \end{bmatrix}$ Model Evidence

Let's Derive the Objective of VI

Minimize $KL[q(\theta)||p(\theta|D)]$

$$KL[q(\theta)||p(\theta|D)] = \log p(D) - E_{q(\theta)} \left[\log \frac{p(\theta, D)}{q(\theta)} \right]$$

Model Evidence

Maximize
$$L = E_{q(\theta)} \left[\log \frac{p(\theta, D)}{q(\theta)} \right]$$

Evidence Lower Bound (ELBO)

"Model Evidence = ELBO + KL"

Variational Inference (VI)

The posterior

The variational distribution

 $p(\theta|D) = p(D|\theta)p(\theta)/p(D) \qquad \qquad q_{\phi}(\theta)$

$$L = E_{q_{\phi(\theta)}} \left[\log \frac{p(D, \theta)}{q_{\phi}(\theta)} \right] = \log p(D) - KL[q_{\phi}(\theta)||p(\theta)]$$

$$q \in Q$$

$$q^{*}(\theta)$$

$$p(\theta|D)$$

Stochastic Variational Inference

$$p(\theta, \boldsymbol{\xi}, \boldsymbol{x}) = p(\theta) \prod_{i=1}^{N} p(\xi_i | \theta) p(x_i | \xi_i, \theta)$$

$$L = E_q \left[\log \frac{p(\theta, \xi, x)}{q(\theta, \xi)} \right]$$
$$= E_q \left[\log \frac{p(\theta) \prod_{i=1}^{N} p(\xi_i | \theta) p(x_i | \xi_i, \theta)}{q(\theta) \prod_{i=1}^{N} q(\xi_i)} \right]$$
$$= E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \sum_{i=1}^{N} E_q \left[\log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right]$$

- O(N) time to compute in each update iteration
- N can be extremely large
- Even one iteration might not be affordable

Stochastic Variational Inference

$$L = E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \sum_{i=1}^{N} E_q \left[\log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla L = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \sum_{i=1}^{N} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{Stochastic approximation}} \nabla L = E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} E_q \left[\log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right] \xrightarrow{\text{gradient}} \nabla \hat{L} = \nabla E_q \left[\log \frac{p(\theta)}{q(\theta)} \right] + \frac{N}{M} \sum_{i=1}^{M} \nabla E_q \left[\nabla \log \frac{p(\xi_i | \theta) p(x_i | \xi_i)}{q(\xi_i)} \right]$$

Stochastic Gradient

How to compute the gradients?

Hoffman et al. Stochastic Variational Inference. JMLR 2013.

Reparameterization Trick

Express $q_{\phi}(\theta)$ as $\epsilon \sim r(\epsilon)$, $\theta = g(\epsilon, \phi)$

$$\begin{aligned} \theta &\sim N(\mu, \sigma^2) \\ \epsilon &\sim N(0, 1), \theta = \mu + \sigma \epsilon \end{aligned}$$

ELBO
$$L = E_{q_{\phi}(\theta)} \left[\log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right] = E_{r(\epsilon)} \left[\log \frac{p(g(\epsilon,\phi),D)}{q_{\phi}(g(\epsilon,\phi))} \right]$$

Gradient $\nabla_{\phi} L = \nabla_{\phi} E_{r(\epsilon)} \left[\log \frac{p(g(\epsilon,\phi),D)}{q_{\phi}(g(\epsilon,\phi))} \right] = E_{r(\epsilon)} \left[\nabla_{\phi} \log \frac{p(g(\epsilon,\phi),D)}{q_{\phi}(g(\epsilon,\phi))} \right]$

Kingma and Welling. Auto-encoding variational bayes. ICLR 2014

Salimans and Knowles. Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression. Bayesian Analysis 2013

REINFORCE Gradients
ELBO
$$L = E_{q_{\phi}(\theta)} \left[\log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right]$$

Gradient of the ELBO
 $\nabla_{\phi} L = \nabla_{\phi} E_{q_{\phi}(\theta)} \left[\log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right] = \int \nabla_{\phi} \{ q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} \} d\theta$
 $= \int \nabla_{\phi} q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} d\theta + \int q_{\phi}(\theta) \nabla_{\phi} \log \frac{p(\theta,D)}{q_{\phi}(\theta)} d\theta$
 $= \int \underline{q_{\phi}(\theta)} \nabla_{\phi} \log q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} d\theta - \int \nabla_{\phi} q_{\phi}(\theta) d\theta$
 $= \nabla_{\phi} \int q_{\phi}(\theta) d\theta = \nabla_{\phi} 1 = 0$

Glynn (1990). Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10), 75–84. Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4), 229–256. Fu (2006). Gradient estimation. Handbooks in Operations Research and Management Science, 13, 575–616.

REINFORCE Gradients
ELBO
$$L = E_{q_{\phi}(\theta)} \left[\log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right]$$

Gradient of the ELBO
 $\nabla_{\phi} L = \nabla_{\phi} E_{q_{\phi}(\theta)} \left[\log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right] = \int \nabla_{\phi} \{ q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} \} d\theta$
 $= \int \nabla_{\phi} q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} d\theta + \int q_{\phi}(\theta) \nabla_{\phi} \log \frac{p(\theta,D)}{q_{\phi}(\theta)} d\theta$
 $= \int q_{\phi}(\theta) \nabla_{\phi} \log q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} d\theta$
 $= E_{q_{\phi}(\theta)} \left[\frac{\nabla_{\phi} \log q_{\phi}(\theta)}{\log q_{\phi}(\theta)} \log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right]$

Glynn (1990). Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10), 75–84. Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4), 229–256. Fu (2006). Gradient estimation. Handbooks in Operations Research and Management Science, 13, 575–616.

Monte Carlo Approximation

- To approximate: $E_{p(x)}[f(x)]$
- MC Approximation:
 - 1. Sample $x_1, x_2, ..., x_K \sim p(x)$
 - 2. Evaluate $f(x_i)$ for each sample

3. Compute
$$E[f(x)] \approx \frac{1}{K} \sum_{i=1}^{K} f(x_i)$$

Unbiased Monte Carlo estimate

- Reparam. gradient: $E_{r(\epsilon)} \left[\nabla_{\phi} \log \frac{p(g(\epsilon, \phi), D)}{q_{\phi}(g(\epsilon, \phi))} \right] \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{\phi} \log \frac{p(g(\epsilon_k, \phi), D)}{q_{\phi}(g(\epsilon_k, \phi))}, \epsilon_k \sim r(\epsilon)$
- REINFORCE gradient: $E_{q_{\phi}(\theta)} \left[\nabla_{\phi} \log q_{\phi}(\theta) \log \frac{p(\theta,D)}{q_{\phi}(\theta)} \right] \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{\phi} \log q_{\phi}(\theta_k) \log \frac{p(\theta_k,D)}{q_{\phi}(\theta_k)}, \theta_k \sim q_{\phi}(\theta)$

Variance Reduction Techniques in MCVI

• When non-differentiable, falls back to REINFORCE gradient

- Solutions to high variance REINFORCE gradients:
 - Low variance unbiased estimators with control variates
 - Biased estimators to enable reparam. trick (potentially low variance)

Scalable variational inference: Summary

- Scalable variational inference:
 - Stochastic optimisation using minibatches
 - Monte Carlo estimation computing intractable expectations
 - Gradient estimation Reparam. Trick or REINFORCE

$$L = E_{q_{\phi}(\theta)} \left[\log \frac{p(\theta, D)}{q_{\phi}(\theta)} \right] = E_{q_{\phi}(\theta)} [\log p(D|\theta) + \log \frac{p(\theta)}{q_{\phi}(\theta)}]$$

$$\downarrow$$

$$L \approx \frac{1}{K} \sum_{k=1}^{K} \frac{N}{M} \sum_{m=1}^{N} \log p(x_m | \theta_k) + \log \frac{p(\theta_k)}{q_{\phi}(\theta_k)}$$

$$x_1, \dots, x_M \sim D$$

$$\theta_1, \dots, \theta_K \sim q_{\phi}(\theta)$$

$$\Leftrightarrow \theta_k = g_{\phi}(\epsilon_k), \epsilon_k \sim r(\epsilon)$$

Deep Latent Variable Model

Amortized Inference

- ϕ parameter for amortized q distribution
- θ decoder parameter

$$L_{i} = E_{q(z_{i})}[\log p_{\theta}(\boldsymbol{x}_{i}|\boldsymbol{z}_{i})] - KL[q(\boldsymbol{z}_{i})||p(z_{i})]$$

$$L = E_{q(z|x)}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - KL[q(\boldsymbol{z}|x)||p(z)]$$

Variational Auto-Encoders (VAE)

Variational Auto-Encoders (VAE)

Rezende et al. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014.

Amortized Inference: Limitations

Amortised approximate posteriors in practice are sub-optimal

- The "refinement" idea:
 - Initialise $q(z|x) = N(z; \mu, \sigma^2)$ with the amortised solution $\mu \leftarrow \mu_{\phi}(x), \sigma \leftarrow \sigma_{\phi}(x)$
 - Then run T more VI gradient steps to update μ , σ

Cremer et al. Inference Suboptimality in Variational Autoencoders. ICML 2018 Marino et al. Iterative Amortized Inference. ICML 2018 Kim et al. Semi-Amortized Variational Autoencoders. ICML 2018

Part II: Advances

- Approximate distribution design
- Optimization objective design
- Future directions

Designing q Distributions

Structured approximations

Auxiliary variables & mixture distributions

Normalizing flows

Implicit approximate posteriors

Structured Approximations

• introduce dependencies between random variables for q:

Hidden Markov Model

Exact posterior $p(z \mid x)$ $z_i \not \leq z_j \mid x$ Mean-field approximation

$$q(z) = \prod_{i} q(z_i)$$

Structured approximation

 $q(z) = \prod_{s} q(z_s)$ $q(z_s) = q(\{z_i\}_{i \in s})$

Main design question: the grouping and conditional dependency structure

Structured Approximations

• Auto-regressive distributions (as a specific dependency structure)

Hidden Markov Model

Exact posterior $p(z \mid x)$ $z_i \not \leq z_j \mid x$ Structured approximation

$$q(z) = \prod_{s} q(z_s)$$
$$q(z_s) = q(\{z_i\}_{i \in s})$$

Auto-regressive approximation

$$q(z) = \prod_{i} q(z_i | z_{
$$q(z_1 | z_{<1}) = q(z_1)$$$$

Main design question: the ordering of the latent variables

Normalizing Flows

- Change-of-variable formula:
 - x is a random variable with probability density function (PDF) $p_X(x)$
 - y = f(x) is an invertible mapping
 - The probability mass is preserved, and the PDF for y = f(x) satisfies

$$p_Y(y)dy = p_X(x)dx$$

prob. mass of region around *y*

$$p_Y(y) = p_X(x) |\det(\frac{dx}{dy})|$$
$$p_X(x) = p_Y(y) |\det(\frac{dy}{dx})|$$

Normalizing Flows

- Variational inference with Normalizing flow
 - Assume $q_0(z_0) = N(z_0; 0, I)$
 - Define $z = f_{\phi}(z_0)$ where $f_{\phi}(\cdot)$ is an invertible mapping parameterized by ϕ

$$q(z) = q_0(z_0) |\det\left(\frac{dz}{dz_0}\right)|^{-1}$$
 with $z_0 = f_{\phi}^{-1}(z)$

(change of variable: $q(z)dz = q_0(z_0)dz_0$)

• Fit q(z) to p(x | z) with VI:

$$L(q(z)) = E_{q(z)}[\log p(x | z) + \log p(z) - \log q(z)]$$
by def. of $q(z)$
= $E_{q(z)}\left[\log p(x, z) - \log q_0(z_0 = f_{\phi}^{-1}(z)) |\det\left(\frac{dz}{dz_0}\right)|^{-1}\right]$
= $E_{q_0(z_0)}\left[\log p(x, f_{\phi}(z_0)) - \log q_0(z_0) + \log |\det\left(\frac{df_{\phi}}{dz_0}\right)|\right]$

reparam. trick: $z \sim q(z) \Leftrightarrow z_0 \sim q_0(z_0), z = f_{\phi}(z_0)$

• Computing ELBO requires $\log |\det \left(\frac{df\phi}{dz_0}\right)|$

Rezende and Mohamed. Variational Inference with Normalizing Flows. ICML 2015

Normalizing Flows

- Variational inference with Normalizing flow
 - Idea: define f_{ϕ} such that $\log |\det \left(\frac{df_{\phi}}{dz_0}\right)|$ is easy to compute!
 - Chain simple invertible mappings together to make a flexible mapping

• For each simple mapping, hopefully the Jacobian log-determinant is easy to compute

$$\Rightarrow \log |\det\left(\frac{df_{\phi}}{dz_{0}}\right)| = \sum_{k=1}^{K} \log |\det\left(\frac{dz_{k}}{dz_{k-1}}\right)|$$

Rezende and Mohamed. Variational Inference with Normalizing Flows. ICML 2015

• Construct $q(\theta)$ as a (hierarchical) mixture distribution

$$q(\theta) = \int q(\theta \mid a) q(a) da$$

• *a* is the auxiliary variable used to enrich the approximate posterior

• Example: Mixture of Gaussians

 $a \sim q(a) = Categorical(\pi_1, ..., \pi_K)$ $\theta \sim q(\theta \mid a) = N(\theta; m_a, \Sigma_a)$

Can be very flexible with many components!

• Construct $q(\theta)$ as a (hierarchical) mixture distribution

$$q(\theta) = \int q(\theta \mid a) q(a) da$$

- *a* is the auxiliary variable used to enrich the approximate posterior
- Now the variational lower-bound becomes intractable:

$$L(\phi) = E_{q(\theta)}[\log p(D,\theta)] - E_{q(\theta)}[\log q(\theta)]$$

Estimated by Monte Carlo: $a_k \sim q(a), \theta_k \sim q(\theta \mid a_k)$ Intractable density $q(\theta) = \int q(\theta|a)q(a) da$

• Solution: introducing an auxiliary variational lower-bound $L(\phi, r)$ with an auxiliary distribution $r(a|\theta)$:

- Optimize $r(a|\theta)$ to close the gap!
- $L(\phi, r)$ estimated by Monte Carlo: $a_k \sim q(a), \theta_k \sim q(\theta \mid a_k)$

Agakov and Barber. An Auxiliary Variational Method. ICONIP 2004 Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015 Ranganath et al. Hierarchical Variational Models. ICML 2016

- Hierarchical mixture distributions for $q(\theta, a)$
 - VI-MCMC hybrid: build $q(\theta)$ with a Markov Chain:

$$\theta \coloneqq \theta^{T}, a = \{\theta^{0:T-1}\}$$
$$q(\theta^{T}) = \int q_{0}(\theta^{0}) \prod_{t=1}^{T} K_{\phi} (\theta^{t} | \theta^{t-1}) d\theta^{0:T-1}$$

Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015 Huang et al. Improving Explorability in Variational Inference with Annealed Variational Objectives. NeurIPS 2018

Auxiliary Variables: Continuous-Time Limit

• SDE for defining $q_{\phi}(\theta)$:

 $d\theta = f_{\phi}(\theta, t)dt + \sigma_{\phi}(\theta, t)dW_t, \theta_0 \sim q_0(\theta), q_{\phi}(\theta) \coloneqq q_T(\theta)$

Design choices:

- SDEs in "complete SG-MCMC framework"
- Annealed Importance Sampling in continuous-time limit

Fitting objectives:

- ELBO with marginal $q_T(\theta)$ (by solving the corresponding prob. ODE)
- Auxiliary ELBO with discretisation + r distribution constructed by backward SDE

Ma et al. A Complete Recipe for Stochastic Gradient MCMC. NIPS 2015 Doucet et al. Score-Based Diffusion meets Annealed Importance Sampling. NeurIPS 2022 Geffner and Domke. Langevin Diffusion Variational Inference. ICML 2023

Implicit Approximate Posteriors

• Two quantities computed in (approximate) Bayesian inference:

approximate Bayesian predictive

 $p(y^*|x^*, D) \approx E_{q(\theta)}[p(y^*|x^*, \theta)]$

$$\approx \frac{1}{K} \sum_{k}^{K} p(y^* | x^*, \theta_k), \ \theta_k \sim q(\theta)$$

approximate posterior moments

 $E_{q(\theta)}[F(\theta)]$

$$\approx \frac{1}{K} \sum_{k}^{K} F(\theta_{k}), \ \theta_{k} \sim q(\theta)$$

Computed with Monte Carlo estimates

Only require fast sampling from q! (no need for analytic form of the q distribution)

implicit distributions

Mohamed and Lakshminarayanan. Learning in Implicit Generative Models. arXiv 2016 Li and Liu. Wild Variational Inference. AABI 2016 Huszár. Variational Inference using Implicit Distributions. arXiv 2017

Implicit Approximate Posteriors

Mescheder et al. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. ICML 2017 Tran et al. Hierarchical Implicit Models and Likelihood-Free Variational Inference. NeurIPS 2017

Li and Turner. Gradient Estimators for Implicit Models. ICLR 2018

Yin and Zhou. Semi-Implicit Variational Inference. ICML 2018

Semi-Implicit Approximate Posteriors

 A combination of "Implicit Posterior" & "Auxiliary Variables":

$$q_{\phi}(\theta) = \int \underbrace{q_{\phi}(\theta|a)}_{\text{tractable}} \underbrace{q_{\phi}(a)}_{\text{implicit}} da,$$

 $L(\phi) = E_{q_{\phi}(\theta)}[\log p(D|\theta)] - E_{q_{\phi}(a)}[KL[q_{\phi}(\theta|a)||p(\theta)]]$ (equiv. to setting $r(a|\theta) = q(a)$)

- Direct optimisation of $L(\phi)$ leads to point mass for $q_{\phi}(a)$
- Solution: regularisers and/or alternative objectives to ensure $q_{\phi}(a)$ has non-zero entropy

Yin et.al. Semi-Implicit Variational Inference. ICML 2018 Yu et.al. Semi-Implicit Variational Inference via Score Matching. ICLR 2023

Objective Functions

For fitting the approximate posterior

Improved Monte Carlo Bounds

• Importance weighted auto-encoder (IWAE) bound:

$$L_{K}(\phi) = E_{z_{1},...,z_{K} \sim q(z)} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p(x, z_{k})}{q(z_{k})} \right]$$

Importance sampling estimate of p(x)

Burda et al. Importance Weighted Auto-encoders. ICLR 2016 Naesseth et al. Variational Sequential Monte Carlo. AISTATS 2018 Maddison et al. Filtering Variational Objectives. NeurIPS 2017 Le et al. Auto-encoding Sequential Monte Carlo. ICLR 2018 Masrani et al. The Thermodynamic Variational Objective. NeurIPS 2019

Improved Monte Carlo Bounds

• Constructing lower-bounds from an estimator R of the marginal:

$$E_{q(h)}[R(h,x)] = p(x) \implies \underline{E_{q(h)}[\log R(h,x)]} \le \log p(x)$$

• Variational lower-bound:
$$h = z$$
, $R(z, x) = \frac{p(x)}{q(x)}$

Jensen's inequality

- IWAE bound: $h = (z_1, ..., z_K), R(h, x) = \frac{1}{K} \sum_{k=1}^{K} \frac{p(x, z_k)}{q(z_k)}$
- Caveat: better MC estimator R doesn't necessarily lead to a better q
 - Example: make $K \to \infty$, then an OKish Gaussian q proposal can give very tight IWAE bound

Domke and Sheldon. Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation. NeurIPS 2019 Rainforth et al. Tighter Variational Bounds are Not Necessarily Better. ICML 2018

$$\alpha > 0, \alpha \neq 1$$
$$D_{\alpha}[p||q] = \frac{1}{\alpha - 1} \log \int p(\theta)^{\alpha} q^{1 - \alpha} d \theta$$

 $\alpha = 1$

$$D_1[p||q] = \lim_{\alpha \to 1} D_{\alpha}(p|q) = KL(p||q)$$

VI with α -Divergence

$$L = E_{\theta \sim q_{\phi}} \left[\log \frac{p(D, \theta)}{q_{\phi}(\theta)} \right] = \log p(D) - KL[q_{\phi}||p]$$

Variational Rényi bound:

$$L_{\alpha} = \frac{1}{1 - \alpha} E_{\theta \sim q_{\phi}} \left[\left(\log \frac{p(D, \theta)}{q_{\phi}(\theta)} \right)^{1 - \alpha} \right] = \log p(D) - D_{\alpha} [q_{\phi} || p]$$

m $L_{\alpha} = L$

 $\lim_{\alpha \to 1} L_{\alpha} =$

Li and Turner. Rényi Divergence Variational Inference. NeurIPS 2016

Dieng et al. Variational Inference via χ-Upper Bound Minimization. NeurIPS 2017 Minka, Tom. Divergence measures and message passing. Technical report, Microsoft Research, 2005.

Does It Work?

$$L_{\alpha} = \frac{1}{1 - \alpha} E_{\theta \sim q_{\phi}} \left[\left(\log \frac{p(\mathsf{D}, \theta)}{q_{\phi}(\theta)} \right)^{1 - \alpha} \right]$$

Bayesian linear regression example: Approximating the posterior with mean-field q

Li and Turner. Rényi Divergence Variational Inference. NeurIPS 2016

Dieng et al. Variational Inference via χ-Upper Bound Minimization. NeurIPS 2017 Minka, Tom. Divergence measures and message passing. Technical report, Microsoft Research, 2005.

F-Divergence

$$D_f[p||q_{\phi}] = E_{\theta \sim q_{\phi}}[f\left(\frac{p(\theta)}{q_{\phi}(\theta)}\right) - f(1)]$$

$$f(t) = -\log t \longrightarrow KL(q||p)$$

$$f(t) = t\log t \longrightarrow KL(p||q)$$

$$f(t) = \frac{t^{\alpha}}{\alpha(\alpha - 1)} \longrightarrow D_{\alpha}(p||q)$$

Wang et.al. Variational Inference with Tail-adaptive f-Divergence. NeurIPS 2018 Wan et.al. f-Divergence Variational Inference. NeurIPS 2020

Integral Probability Metric (IPM)

• Using a test function to describe difference:

 $D[q(z), p(z|x)] = \sup_{f \in F} |E_{q(z)}[f(z)] - E_{p(z|x)}[f(z)]|$

• Stein discrepancy: only requires $z \sim q(z)$ and $\nabla_z \log p(z|x) = \nabla_z \log p(z,x)$

 $S[q(z), p(z|x)] = \sup_{f \in F_q} |E_{q(z)}[\nabla_z \log p(z, x)^\top f(z) + \nabla_z^\top f(z)]|$

Figure adapted, source: Danica Sutherland

Gorham and Mackey. Measuring Sample Quality with Stein's Method. NeurIPS 2015 Ranganath et al. Operator Variational Inference. NeurIPS 2016 Liu and Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. NeurIPS 2016

Score Matching

• Use Fisher divergence for *q* distribution fitting:

$$L(\phi) = E_{\boldsymbol{q}_{\phi}(\theta)}[\|\nabla_{\theta} \log q(\theta) - \nabla_{\theta} \log p(D,\theta)\|_{2}^{2}]$$

Zhang et al. (2018). Variational Hamiltonian Monte Carlo via Score Matching. Bayesian Analysis 13(2) 485 - 506 Elkhalil et al. Fisher Auto-Encoders. AISTATS 2021. LK Wenliang. On the failure of variational score matching for VAE models. arXiv:2210.13390

How to Choose the Inference Algorithm?

Zhang et al. Meta-Learning for Variational Inference. AABI 2019

Free-energy as an Objective

• Bethe free-energy & message passing:

- Both q and the inference algorithm are defined by the *factor graph*
- Optimal *q* achieved at the fixed point of the *Bethe free energy*

Wainwright and Jordan. Graphical Models, Exponential Families, and Variational Inference. 2008. Li and Turner. A Unifying Approximate Inference Framework from Variational Free Energy Relaxation. AABI 2016

q design

e.g. mean-field: $q(\theta) = \prod_i q(\theta_i)$

objective design variational lower-bound: $L(\phi) = E_{q(\theta)}[\log p(D|\theta)] - KL[q(\theta)||p(\theta)]$

Future Directions - Theory

- Understanding variational inference
 - Optimisation issues
 - Properties of the bounds (for model selection)
- Understanding encoder design in VAE:
 - Amortization gap
 - Inductive bias of q
 - How would approximate inference impact on *p* model learning
 - e.g., estimation of causal deep generative models
 - e.g., why "bottom-up" encoder in Hierarchical VAE doesn't work very well

Future Directions - Methodology

- Scaling up
 - Memory efficiency in Bayesian neural network context
 - Faster test-time computation
- Connecting with sampling methods
 - Translating theory of MCMC to variational inference
 - Optimising design choices in sampling with variational inference

Bayesian Neural Network Tutorial @ ProbAI 2022

Thank You!

Questions? Ask at: yingzhen.li@imperial.ac.uk