## Probabilistic Numerical Approximation

Nicholas Krämer



Technical University of Denmark

### **Probabilistic** Numerical Approximation

Nicholas Krämer



Technical University of Denmark

## Probabilistic **Numerical** Approximation

Nicholas Krämer



Technical University of Denmark

# Surprised?

### Example: Interpolation

- $\diamond$  Unknown function  $f: \Omega \to \mathbb{R}$
- $\diamond$  Given data  $(x_n, f(x_n))_{n=1}^N$ , what is  $f(\tilde{x})$ ?

#### Relevant for:

- ♦ Regression (e.g. statistical emulators)
- ♦ Some classification



## Solving the interpolation problem

#### Traditional approaches:

- ♦ Polynomials
- ♦ Polynomial splines
- Neural networks (maybe less traditional)

So why are we so keen on Gaussian processes?

- Very flexible. Work on all sorts of problems
- ♦ Easy to do fun statistics with ("uncertainty quantification")



We are already breathing probabilistic numerics. Let's dig deeper.

## The numerics of Gaussian processes

The posterior mean of a Gaussian process:

$$m(x) = k(x, \mathbf{X}) \underbrace{k(\mathbf{X}, \mathbf{X})^{-1}}_{\text{Large & ill-cond.}} y$$

### Feasible Gaussian processes depend on good numerics.

#### Solutions:

- As usual: Cholesky decomposition (no chance)
- ♦ Iterative solvers
- ♦ Low-rank approximations





## Real-life dynamical systems

- $\diamond$  We know: y(t) solves  $\dot{y}(t) = f(y(t), \theta), y(0) = y_0.$
- $\diamond$  We know:  $y(1) + \epsilon = 4$ ,  $\epsilon \sim N(0, 0.1^2)$
- $\diamond$  What is  $\theta$ ?

### Who cares about this kind of problem? E.g.

- Physics-informed ("scientific") machine learning
- Diffusion models, neural ODEs
- Al and the physical world
- Me. And therefore (today), you.



### Common solution:



- 1. Guess  $\theta$  (e.g.  $\theta = 10$ )
- 2. Compute y(1) given  $\dot{y}(t) = f(y(t), 10), y(0) = y_0$
- 3. Compare y(1) to  $y(1) + \epsilon = 4$ ,  $\epsilon \sim N(0, 0.1^2)$
- 4. Use the comparison to improve the guess

#### Nonlinear ODEs don't have closed-form solutions

- ♦ Use a numerical ODE solver.
- ♦ E.g. a Runge-Kutta method
- Well-understood. Performant software.





There must be a better way!

### What is the problem?

### History

- $\diamond$  RK methods from  $\sim$  100 years ago.
- Not designed for use in a (statistical) context

### Language barriers

- ♦ Know stats/ML or know solvers
- When simulating, we must take solvers for granted?

#### What does this imply?

- Numerical methods were not designed to deal with webs of algorithms
- Numerical methods were not designed to deal with multiple sources of information
- ♦ Numerical methods were not designed to deal with *model discrepancies*

Probabilistic numerical approximation.

### Outline for today



"How".

## Introduction to numerical algorithms

Course outline

- 1. How to store a number
- Matrices
- 3. Interpolation & Least squares
- 4. Integration, differentiation
- 5. Krylov methods, optimisation, differential equations

The right way (my way) Probability distributions

Bayes' rule, manipulating Gaussians

Gaussian processes and the like

Next

**Afterwards** 

## Recap: Gaussian process interpolation

⇒ Prior:  $p(u) = GP(0, k(\cdot, \cdot))$ ⇒ Information:  $p(y \mid u(\mathbf{X})) = N(u(\mathbf{X}), \sigma^2 I)$ ⇒ Posterior:  $p(u(\cdot) \mid y) = GP(W(\cdot)y, E(\cdot, \cdot))$  with  $W(z) = k(z, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 I)^{-1},$   $E(z, z') = k(z, z') - k(z, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 I)^{-1}k(\mathbf{X}, z')$ 

### Why do we like Gaussian processes?

- ♦ Closed-form marginals
- ♦ Closed-form conditionals
- Well-behaved under linear operations
- Learn from different communities

|             | Monday                                      | Tuesday                                                  | Wednesday                                                   | Thursday                                                                                 | Friday                                                        |
|-------------|---------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Dates       | 17 July 2023                                | 18 July 2023                                             | 19 July 2023                                                | 20 July 2023                                                                             | 21 July 2023                                                  |
| Themes      | Introduction to<br>Probablistic Modeling    | Probabilistic<br>Models/Sequential<br>Decision Making    | Probabilistic Numerics                                      | Implicit Models/Diffusion<br>Models                                                      | Further Probabilistic Modelin                                 |
| 09:00       |                                             | Mark van der Wilk                                        | Nico Kramer- Probabilistic<br>Numerical Approximation       | Francisco Vargas                                                                         | Rich Turner- Neural<br>Processes for Environmenta<br>Research |
| 09:30       | Carl Rasmussen-<br>Gaussian processes       |                                                          |                                                             |                                                                                          |                                                               |
| 10:00       |                                             |                                                          |                                                             |                                                                                          | Break                                                         |
| 10:30       | Break                                       | Break                                                    | Break                                                       | Break                                                                                    |                                                               |
| 11:00       | Mike Tipping-                               | lan Osban                                                | Jonathan Wenger-<br>Computation-aware<br>Gaussian Processes | José Miguel Hernández<br>Lobato- Normalizing Flows<br>for Molecular Modeling             | Yingzhen Li- Approximate<br>Inference: An Intro               |
| 11:30       | Probability, Bayesian<br>Inference &        |                                                          |                                                             |                                                                                          |                                                               |
| 12:00       | Parsimonious Models                         |                                                          |                                                             | Lunch                                                                                    | Lunch                                                         |
| 12:30       |                                             | Lunch                                                    | Poster session<br>&<br>Lunch                                |                                                                                          |                                                               |
| 13:00       | Lunch                                       |                                                          |                                                             | opportunities in<br>accelerating materials<br>design with geometric<br>deep learning and | Neill Campbell                                                |
| 13:30       | Tony O'Hagan-                               | Katja Hofmann-Towards<br>human-like Al in video<br>games |                                                             |                                                                                          |                                                               |
| 14:00       | Gaussian Processes I                        |                                                          |                                                             | Break                                                                                    | Break                                                         |
| 14:30       | nave known                                  |                                                          |                                                             |                                                                                          | Neil Lawrence                                                 |
| 15:00       | Break                                       | Break                                                    | Henry Moss                                                  | Marc Deisenroth                                                                          |                                                               |
| 15:30       | David Ginsbourger- On<br>Gaussian Process   | Arno Solin- Sequential                                   | Treiny moss                                                 | mare detaction                                                                           | Poster Session                                                |
| 16:00       | Multiple-Fold Cross-<br>Validation          | Inference and Learning                                   |                                                             |                                                                                          | &<br>Farewell Reception                                       |
| 16:30       |                                             |                                                          |                                                             |                                                                                          | T die Heit Tteeepioni                                         |
| 17:15       |                                             | Science Tour- 90 min*                                    |                                                             |                                                                                          |                                                               |
| 19:00-22:00 | Evening Dinner at<br>Sidney Sussex College* |                                                          |                                                             |                                                                                          |                                                               |
| 19:30       |                                             |                                                          |                                                             | Cambridge Shakespeare<br>Festival*                                                       |                                                               |

### Probabilistic numerical integration

aka {Kernel, Bayesian(-Hermite), probabilistic} {quadrature, cubature, integration}

#### Problem

Compute

$$\mu = \int_{\Omega} f(x) p(x) \mathrm{d}x$$

from evaluations of f

#### Solution

Gaussian process! Generative model

$$\mu = \int_{\Omega} f(x)p(x)dx \qquad p(f) = GP(0, k(\cdot, \cdot)) \qquad y = f(\mathbf{X})$$

## Probabilistic numerical integration (continued)

#### Solution

Gaussian process! Generative model

$$\mu = \int_{\Omega} f(x)p(x)dx \qquad p(f) = GP(0, k(\cdot, \cdot)) \qquad y = f(\mathbf{X})$$

Then,  $p(f \mid y)$  is a Gaussian process.  $p(\mu \mid y) = N(Wy, E)$  is a Gaussian random variable,

$$W = \left[ \int_{\Omega} k(x, \mathbf{X}) p(x) dx \right] k(\mathbf{X}, \mathbf{X})^{-1}$$

$$E = \left[ \int_{\Omega} \left[ \int_{\Omega} k(x, y) p(x) dx \right] p(y) dy \right] - Wk(\mathbf{X}, \mathbf{X}) W^{\top}$$

## Why is probabilistic numerical integration so fantastic?

♦ Posterior mean replicates non-probabilistic numerical integration routines:

| Rule                | Prior               | Point set          |
|---------------------|---------------------|--------------------|
| Trapezoidal rule    | Wiener process      | equispaced nodes   |
| Gaussian quadrature | polynomial features | suitable point set |

- $\diamond$  Yet: choose  $k(\cdot, \cdot)$  and **X** as the problem dictates, not as the solver requires
- Convergence guarantees
- ♦ Easy to modify: adaptive, multi-level, control-variates, etc.

Probabilistic numerical integration is a template for probabilistic numerical algorithms

## (Bayesian) probabilistic numerical algorithms

| 1) | et | ın | ıt. | ior |
|----|----|----|-----|-----|
|    |    |    |     |     |

A Bayesian probabilistic numerical algorithm requires

A prior distribution
 Gaussian process

An information "operator"

e.g. point evaluations

♦ Conditioning

As usual

♦ A quantity of interest

e.g. an integral Integral

Cockayne, Oates, Sullivan, Girolami. Bayesian probabilistic numerical methods. SIAM Review. 2019.

Why do we need a definition?



## Modifying probabilistic numerical integration

Generative model

$$s(\mathbf{Y}) := \frac{d^2}{dx^2} f(\mathbf{Y}) \quad \mu = \int_{\Omega} f(x) p(x) dx \qquad p(f) = \mathsf{GP}(0, k(\cdot, \cdot)) \qquad y = f(\mathbf{X})$$

Then,  $p(s(\mathbf{Y}) | y) = N(W(\mathbf{Y})y, E(\mathbf{Y}, \mathbf{Y}))$  is Gaussian,

$$W(\mathbf{Y}) = \frac{d^2}{dx^2} k(\mathbf{Y}, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1},$$
  
$$E(\mathbf{Y}, \mathbf{Y}) = \frac{d^4}{dx^2 dx'^2} k(\mathbf{Y}, \mathbf{X}) - W(\mathbf{Y}) k(\mathbf{X}, \mathbf{X}) W(\mathbf{Y})^{\top}$$

This is probabilistic numerical differentiation.

## Why is probabilistic numerical **differentiation** so fantastic?

- $\diamond$  Generalises numerical differentiation formulas (for certain choices of  $k(\cdot, \cdot)$  and **X**)
- ♦ Strong connections to radial basis function collocation & finite differences
- $\diamond$  Choose  $k(\cdot, \cdot)$  and **X** as the problem dictates, not as the solver requires
- ♦ Do statistics (model validation, etc) on a numerical algorithm



pip install probfindiff

### Some more modification

Generative model

$$s(\mathbf{Y}) = \frac{d^2}{dx^2} f(\mathbf{Y}) \qquad p(f) = \mathsf{GP}(0, k(\cdot, \cdot)) \qquad y = f(\mathbf{X})$$

Then,  $p(y \mid s(\mathbf{Y})) = N(W(\mathbf{X})y, E(\mathbf{X}, \mathbf{X}))$  is Gaussian,

$$W(\mathbf{X}) = k(\mathbf{X}, \mathbf{Y}) \left[ \frac{d^4}{dx^2 dx'^2} k(\mathbf{Y}, \mathbf{Y}) \right]^{-1},$$

$$E(\mathbf{X}, \mathbf{X}) = k(\mathbf{Y}, \mathbf{X}) - W(\mathbf{Y}) \left[ \frac{d^4}{dx^2 dx'^2} k(\mathbf{X}, \mathbf{X}) \right] W(\mathbf{Y})^{\top}$$

and we have a probabilistic numerical solver for a partial differential equation

### Take-away message

- It seems that we can solve any problem.
- ♦ To do so:
  - Know your prior
  - ♦ Know your information
  - ⋄ Know your quantity of interest
- ♦ Learn from traditional algorithms about stability, convergence, and so on
- But don't be afraid of modifications:

Do what the problem dictates, not what the solver requires

## A more sophisticated example

### Problem

Simulate  $\dot{y}(t) = f(y(t))$  from  $y(0) = y_0$  to y(1).

#### More sophisticated because:

- ♦ Nonlinear derivative constraints
- ⋄ Explicit temporal structure
- ♦ (I like to think about this kind of problem)



## Solving ODEs

#### Problem

Simulate 
$$\dot{y}(t) = f(y(t))$$
 from  $y(0) = y_0$  to  $y(1)$ .

But we come well-equipped:

$$\diamond \text{ Prior: } p(y) = \mathsf{GP}(0, k(\cdot, \cdot))$$

♦ Information:

$$\begin{cases} \dot{y}(\mathbf{T}) = f(y(\mathbf{T})), \\ y(0) = y(t_0) = 0 \end{cases}$$

 $\diamond$  Quantity of interest: y(1)

### Goal

Estimate

$$p(y(1) \mid \dot{y}(\mathbf{T}) = f(y(\mathbf{T})), y(0) = y_0)$$

as fast as possible.

### Prior

Choose 
$$p(y) = \mathsf{GP}(0, k(\cdot, \cdot))$$
 such that it has a state-space representation: let  $\mathbf{y} = (y, \dot{y}, ...)$  
$$\mathsf{d}\mathbf{y}(t) = F\mathbf{y}(t)\mathsf{d}t + L\mathsf{d}w(t), \quad p(\mathbf{y}(0)) = N(m_0, C_0)$$

### Once-integrated Wiener process

$$F = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

### Twice-integrated Wiener process

$$F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

### Discretised prior

Time-grid  $\mathbf{T} = (t_0, ..., t_N)$ , then:

$$p(\mathbf{y}(t_{n+1}) \mid \mathbf{y}(t_n)) = N(\Phi(\Delta t_n)\mathbf{y}(t_n), \Sigma(\Delta t_n)), \quad p(\mathbf{y}(t_0)) = N(m_0, C_0)$$

with computable  $\Phi$  and  $\Sigma$ .



## Algorithm

- 1. Initialise  $p(y(0) = N(m_0, C_0)$
- 2. Condition  $p(y(0) | y(0) = y_0)$
- 3. For n = 1, ..., N:
  - 3.1 Linearise  $f(x) \approx A_n x + b_n$ ; ODE becomes  $\dot{y}(t) \approx A_n y(t) + b_n$
  - 3.2 Correct

$$p(\mathbf{y}(t_n) \mid \dot{y}(t_n) = A_n y(t_n) + b_n, \ \dot{y}(\mathbf{T}_{1:n-1}) = f(y(\mathbf{T}_{1:n-1}), \ y(0) = y_0)$$

$$\approx p(\mathbf{y}(t_n) \mid \dot{y}(\mathbf{T}_{1:n}) = f(y(\mathbf{T}_{1:n}), y(0) = y_0))$$

- 3.3 Extrapolate  $p(\mathbf{y}(t_{n+1}) | \dot{y}(\mathbf{T}_{1:n}) = f(y(\mathbf{T}_{1:n})), y(0) = y_0)$
- 4. Do something with the probabilistic numerical ODE solution























### State of the art algorithm

- 1. Initialise whole state p(y(0)) exactly
- 2. Guess an initial step-size  $\Delta t$
- 3. While  $t_n < 1$ :
  - 3.1 Apply preconditioner
  - 3.2 Extrapolate in square-root form
  - 3.3 Compute smoothing gains (optional)
  - 3.4 Un-apply preconditioner
  - 3.5 Linearise  $f \approx A_n x + b_n$
  - 3.6 Compute marginal likelihood
  - 3.7 Calibrate hyperparameters
  - 3.8 Estimate error
  - 3.9 Reject step if error too large
  - 3.10 Complete correction
  - 3.11 Propose new time-step
- Do something with the probabilistic numerical ODE solution

] <u>add ProbNumDiff</u>Eq



pip install probdiffeq



### Conclusion

To build a (probabilistic) numerical algorithm

- ⋄ Write down the prior belief
- Separate the information from the quantities of interest
- Modify the algorithm according to what the problem dictates
- ⋄ Be clever about the implementation

More about the "how":

Hennig, Osborne, Kersting. Probabilistic Numerics. Cambridge University Press, 2022.



"Why"

## Back to why we are doing this

- Why explicit prior and posterior beliefs?
- Why separate the information from the quantity of interest?
- In other words: why take a probabilistic perspective?

Traditional algorithms don't do that.

Here is why they should.

?











Image: Stable diffusion

## Partial differential equations

Partial differential equation

$$\frac{\partial}{\partial t}u(t,x)=\frac{\partial^2}{\partial x^2}u(t,x),\quad u(0,x)=u_0(x)$$

#### Why?

- ⋄ Spatiotemporal dynamics
- ♦ Climate, geophysics, airplanes, and so on
- Require large-scale computations

## Solving PDEs as ODEs

Partial differential equation

$$\frac{\partial}{\partial t}u(t,x)=\frac{\partial^2}{\partial x^2}u(t,x),\quad u(0,x)=u_0(x)$$

Let  $X := (x_0, ..., x_N)$  be some grid. Track only  $U(t) = u(t, X) = [u(t, x_n)]_{n=0}^N$ . Approximate

$$\frac{\partial^2}{\partial x^2} U(t) \approx \frac{1}{h^2} \begin{pmatrix} -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \end{pmatrix} U(t) =: WU(t)$$

# Solving PDEs as ODEs (continued)

Solve the PDE as an ODE:  $\dot{U}(t) = AU(t)$ ,  $U(0) = u_0(X)$ 

#### Advantages:

- ♦ Use any ODE solver
- Use any numerical differentiation method
- Move PDE-solving (unfamiliar territory) to ODE-solving (familiar territory)



## What does this look like for probabilistic numerical solvers?

Posterior distribution

$$p(U \mid \dot{U}(\mathbf{T}) = AU(\mathbf{T}), U(0) = u_0(\mathbf{X}))$$

compute sequentially as usual.

**Disadvantage:** Numerical differentiation discards information

There must be a better way!

### We know the way!

We know probabilistic numerical differentiation:

- $\diamond$  Prior:  $p(u) = \mathsf{GP}(0, k_t \otimes k_x)$ , where  $(k_t \otimes k_x)(t, t', x, x') = k_t(t, t')k_x(x, x')$
- $\diamond \text{ Then, } p(\partial_x^2 u(\cdot, \mathbf{X}) \mid u(\cdot, \mathbf{X})) = \mathsf{GP}(Wu(\cdot, \mathbf{X}), k_t \otimes E) = Wu(\cdot, \mathbf{X}) + \xi(\cdot)$
- ♦ The PDE solution is

$$p(u \mid \partial_t u(\mathbf{T}, \mathbf{X}) = \partial_x^2 u(\mathbf{T}, \mathbf{X}), u(0, \mathbf{X}) = u_0(\mathbf{X}))$$
  
=  $p(u, \xi \mid \partial_t u(\mathbf{T}, \mathbf{X}) = Wu(\mathbf{T}, \mathbf{X}) + \xi(\mathbf{T}), u(0, \mathbf{X}) = u_0(\mathbf{X}))$ 

Track differentiation error as model discrepancy

### Calibrate the PDE solver

"PN" = "Probabilistic numerics"; "MOL" = "Method of lines" (non-probabilistic).



### PDE solvers: pipelines of computation

- Discretise spatial domain probabilistically.
- ♦ Compute spatiotemporal PDE solution without an unnecessary loss of information.

Krämer, Schmidt, Hennig.

Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations. AISTATS 2021.

- ♦ Don't throw information
- Especially not if future computations depend on it



### Real-life dynamical systems





- $\diamond$  We know: y(t) solves  $\dot{y}(t) = f(y(t), \theta), y(0) = y_0$ .
- $\diamond$  We know:  $y_k = y(t_k) + \epsilon = 4$ ,  $\epsilon \sim N(0, 0.1^2)$ , k = 1, ..., K
- $\diamond$  What is  $\theta$ ?

### Parameter estimation

Abbreviate:

$$\pi(y \mid \theta) := \rho(y \mid \{\dot{y}(t_n) = f(y(t_n), \theta)\}_{n=0}^{N}, y(t_0) = y_0, \theta)$$

Marginalise ("average") likelihood of observations over all IVP solutions:

$$M(\theta) = p(\lbrace y_k \rbrace_{k=1}^K \mid \theta) \approx \int p(\lbrace y_k \rbrace_{k=1}^K \mid y) \pi(y \mid \theta) dy$$

Run (gradient-based) MCMC or optimisation schemes.

### Averaging loss functions over probabilistic solutions



Kersting, Krämer, Schiegg, Daniel, Tiemann, Hennig.

Differentiable likelihoods for fast inversion of 'likelihood-free' dynamical systems.

ICML 2020.

### Probabilistic solvers & MCMC





High resolution images:
https://pnkraemer.github.io/probdiffeq/



Tronarp, Bosch, Hennig.
Fenrir: Physics-enhanced regression for initial value problems.
ICML 2022.

### Conclusion

- ♦ If you build a statistical model around a numerical algorithm: Use prior and posterior beliefs as much as you can
- Marginalise over probabilistic solutions







## More parameter estimation

- $\diamond$  We know:  $\dot{y}(t) = f(y(t), \beta(t)), y(0) = y_0$
- $\diamond$  We also know:  $y_k = y(t_k) + \epsilon$ ,  $p(\epsilon) = N(0, \sigma^2)$ , k = 1, ..., K

#### $\beta$ is an unknown function!

### How do people usually solve this?

Assume finitely many features

$$eta(t) = \sum_{\ell=1}^L eta_\ell \phi_\ell(t)$$

- $\diamond$  Tune  $\beta$  by tuning L parameters  $(\beta_{\ell})_{\ell=1}^{L}$
- ♦ Use any optimiser or MCMC. E.g. in the SIRD model:



### How do we solve this?

- $\diamond \text{ Prior: } p(y) = \mathsf{GP}(0, k_1), \ p(\beta) = \mathsf{GP}(0, k_2)$
- ♦ Information:  $\dot{y}(\mathbf{T}) = f(y(\mathbf{T}), \beta(\mathbf{T})), \ y(0) = y_0, \ y_k = y(t_k) + \epsilon, \ k = 1, ..., K$
- ♦ Conditioning as in the ODE solver setting



## How do we solve this? (continued)



#### Posterior distribution

$$p(y,\beta \mid \dot{y}(\mathbf{T}) = f(y(\mathbf{T}),\beta(\mathbf{T})), y_k = y(t_k) + \epsilon)$$



### Model discrepancy in the SIRD model

#### **Problem**

Positivity: y(t) > 0 guaranteed SIRD model has issues

#### Solution

Assume  $y = \exp(\tilde{y})$ ,  $p(\tilde{y}) = \mathsf{GP}(0, k)$ Model the discrepancy  $\dot{y}(\mathbf{T}) = f(y(\mathbf{T}), \beta(\mathbf{T})) + \xi(\mathbf{T})$ 



#### Conclusion

- ♦ Write down all sources of information
- Discretise and approximate as late as possible

Schmidt, Krämer, Hennig.

A Probabilistic State Space Model for Joint Inference from Differential Equations and Data. Neurips 2021.

Epilogue

### Numerical algorithms drive machine learning

But real-life starts when traditional treatments of numerical algorithms stop.

#### Dissect your algorithm:

- ⋄ Prior distribution
- ♦ Information sources
- Conditioning methods
- ♦ Quantities of interest

Do as the problem dictates.

Not as the solver requires.

PDEs:

#### Results

- ♦ Numerical integration
- ♦ Numerical differentiation
- ♦ PDE solvers
- ♦ (Nonlinear) ODE solvers

Parameter estimation:



Multi-source:

