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Surprised?
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Example: Interpolation

1
¢ Unknown function f : Q - R
o Given data (x,, f(x,))N_;, what is £(X)?
0
Relevant for:
¢ Regression (e.g. statistical emulators)
1 b

o Some classification
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Solving the interpolation problem

Traditional approaches:
o Polynomials
o Polynomial splines

o Neural networks (maybe less traditional)

So why are we so keen on Gaussian processes?

o Very flexible. Work on all sorts of problems

Carl Edward Rasmussen and Christopher K. 1. Williams

o Easy to do fun statistics with ( “uncertainty quantification™)

We are already breathing probabilistic numerics. Let's dig deeper.
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The numerics of Gaussian processes

The posterior mean of a Gaussian process:

m(x) = k(x,X) k(X,X)™! y

Large & ill-cond.

Solutions:
o As usual: Choles position (no chance)
o lterative solvers

o Low-rank approximations
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Real-life dynamical systems

o We know: y(t) solves y(t) = f(y(t),8), y(0) = yo.
o We know: y(1) +€ =4, e ~ N(0,0.12)
o What is 67

Who cares about this kind of problem? E.g.
o Physics-informed ( “scientific”) machine learning
¢ Diffusion models, neural ODEs
¢ Al and the physical world
o Me. And therefore (today), you.
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Common solution:

Guess 6 (e.g. 6 = 10)

Compute y(1) given y(t) = f(y(t), 10), y(0) = yo
Compare y(1) to y(1) + € =4, e ~ N(0,0.1%)
Use the comparison to improve the guess

Nonlinear ODEs don’t have closed-form solutions
o Use a numerical ODE solver.
o E.g. a Runge-Kutta method u

& Well-understood. Performant software. DifferentialEquations.jl

Guess > Solve

\ Compare

A 4

=
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Guess

v

Solve

Guess ¥

Compare

T

There must be a better way!

Compare




What is the problem?

History Language barriers
¢ RK methods from ~ 100 years ago. © Know stats/ML or know solvers
o Not designed for use in a (statistical) © When simulating, we must take
context solvers for granted?

What does this imply?
o Numerical methods were not designed to deal with webs of algorithms
o Numerical methods were not designed to deal with multiple sources of information

o Numerical methods were not designed to deal with model discrepancies
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QOutline for today
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Introduction to numerical algorithms

ok wh =

co Kramer

Course outline

How to store a number

Matrices

Interpolation & Least squares

Integration, differentiation

Krylov methods, optimisation, differential equations
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The right way (my way)

Probability distributions

Bayes' rule, manipulating Gaussians
Gaussian processes and the like
Next

Afterwards



Recap: Gaussian process interpolation

o Prior: p(u) = GP(0, k(-, -))
o Information: p(y | u(X)) = N(u(X), o2/)
o Posterior: p(u(-) | y) = GP(W(-)y, E(-,-)) with

W(z) = k(z, X)(k(X, X) + 021)71,
E(z,Z') = k(z,Z') — k(z, X)(k(X, X) + 021) 1 k(X, 2)



Why do we like Gaussian processes?

¢ Closed-form marginals
¢ Closed-form conditionals

o Well-behaved under linear
operations

¢ Learn from different
communities
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Probabilistic numerical integration

aka {Kernel, Bayesian(-Hermite), probabilistic} {quadrature, cubature, integration}

Problem

Compute
,LL:/Qf(x)p(x)dx

from evaluations of f

Solution

Gaussian process! Generative model

b / FO)p(x)dx p(f) = GP(0, k(-,-))
Q
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Probabilistic numerical integration (continued)

Solution

Gaussian process! Generative model

b= / f(x)p(x)dx p(f) = GP(0, k(-, -)) y = f(X)
Q

Then, p(f | y) is a Gaussian process. p(u | y) = N(Wy, E) is a Gaussian random variable,
W = [/ k(x,X)p(X)dx} k(X, X)!
Q
E= [/Q UQ k(x,J/)p(X)dx] p(y)dy] — WX, X)W



Why is probabilistic numerical integration so fantastic?

o Posterior mean replicates non-probabilistic numerical integration routines:

Rule Prior Point set
Trapezoidal rule Wiener process equispaced nodes
Gaussian quadrature polynomial features suitable point set

o Yet: choose k(-,-) and X as the problem dictates, not as the solver requires
¢ Convergence guarantees

o Easy to modify: adaptive, multi-level, control-variates, etc.

Probabilistic numerical integration is a template for probabilistic numerical algorithms
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(Bayesian) probabilistic numerical algorithms

Definition

A Bayesian probabilistic numerical algorithm requires
o A prior distribution Gaussian process
¢ An information “operator” e.g. point evaluations
o Conditioning As usual
o A quantity of interest e.g. an integral Integral

Cockayne, Oates, Sullivan, Girolami. Bayesian probabilistic numerical methods.
SIAM Review. 2019.
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Why do we need a definition?
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Modifying probabilistic numerical integration

Generative model

s(Y) = ;Z f(Y) wu= - p(x)dx p(f) = GP(0, k(-,-)) y = f(X)

Then, p(s(Y) | y) = N(W(Y)y, E(Y,Y)) is Gaussian,

2

W(Y) = %k(Y, X)k(X, X)™?

d4

E(Y.Y)= 5

k(Y, X) — W(Y)k(X, X)W(Y)"

This is probabilistic numerical differentiation.



Why is probabilistic numerical differentiation so fantastic?

o Generalises numerical differentiation formulas (for certain choices of k(-, ) and X)
o Strong connections to radial basis function collocation & finite differences
o Choose k(-,-) and X as the problem dictates, not as the solver requires

o Do statistics (model validation, etc) on a numerical algorithm

B https://probfindiff.readthedocs.io/en/stable/notebook ration.html B 19

# » Calibration and model selection © Edit on GitHub

Calibration and model selection

Probabilistic numerical finite differences use the formalism of Gaussian process regression to derive
the schemes. This brings with it the advantage of uncertainty quantification, but also the burden of
choosing a useful prior model.

pip install probfindiff
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Some more modification

Generative model

_ %f(Y) p(f) =GP0 k(~)) ¥ =1(X)

Then, p(y | s(Y)) = N(W(X)y, E(X, X)) is Gaussian,

s(Y)

d4

W(X) = k(X, Y) [W

k(Y,Y)} B ,
d*

E(X.X) = k(Y. X) ~ W(Y) [dd

k(X, X)] W(Y)"

and we have a probabilistic numerical solver for a partial differential equation
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Take-away message

¢ It seems that we can solve any problem.
o To do so:

o Know your prior
o Know your information
o Know your quantity of interest

¢ Learn from traditional algorithms about stability, convergence, and so on

o But don't be afraid of modifications:

Do what the problem dictates, not what the solver requires
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A more sophisticated example

Problem
Simulate y(t) = f(y(t)) from y(0) = yo to y(1).

More sophisticated because: *\’\.

¢ Nonlinear derivative constraints "/’\%\
o Explicit temporal structure
o (I like to think about this kind of problem)
%
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Solving ODEs

Problem
Simulate y(t) = f(y(t)) from y(0) = yp to y(1).

But we come well-equipped:

o Prior: p(y) = GP(0, k(-, -)) Goal
¢ Information: Estimate
{ y(T) = f(y(T)). p(y(1) | ¥(T) = F(¥(T)). ¥(0) = )
y(0) = y(to) =0

as fast as possible.
o Quantity of interest: y(1)



Prior

Choose p(y) = GP(0, k(+, -)) such that it has a state-space representation: let y = (v, y, ...)

dy(t) = Fy(t)dt + Ldw(t), p(y(0)) = N(mo, Go)

Once-integrated Wiener process Twice-integrated Wiener process

0 1 0 01 0 0
F_(O O)' L_(1> F=[o o 1|, L=1o
0 0 O 1
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Discretised prior

Time-grid T = (to, ..., ty), then:

p(y(ta1) [ ¥(tn)) = N(®(ALa)y(tn), Z(Atn)).  p(¥(to)) = N(mo, o)

with computable ¢ and .
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Algorithm

1. Initialise p(y(0) = N(mg, Co)
2. Condition p(y(0) | ¥(0) = )
3. Forn=1,...,N:

3.1 Linearise f(x) & Anx + b,; ODE becomes y(t) = Any(t) + b,
3.2 Correct

p(y(tn) | ¥(ta) = Any(ta) + ba, ¥(T1n-1) = F(¥(T1:n-1), ¥(0) = »0)
~ p(y(tn) | }./(Tl:n) = f(_y(len), y(O) = yo))

3.3 Extrapolate p(y(tnt1) | ¥(T1n) = F(¥(T1a)). ¥(0) = y0)
4. Do something with the probabilistic numerical ODE solution
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1.0 1 4

0.0
tO tmax
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to tmax
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0.0 T
tO tmax
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1.0 1

0.0 T

tO tmax
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0.0 T

tO tmax
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0.0 T

tO tmax
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0.0 T

tO tmax
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0.0 T
tO tmax
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State of the art algorithm

] add ProbNumDiffEq

> C O 8 hp:

1. Initialise whole state p(y(0)) exactly

2. Guess an initial step-size At ProbNumDiffEq.jl
3. While t, < 1:

3.1 Apply preconditioner fome

3.2 Extrapolate in square-root form :Zf:”*"’:‘m

3.3 Compute smoothing gains (optional) o

3.4 Un-apply preconditioner
3.5 Linearise f = Anx + b,
3.6 Compute marginal likelihood

pip install probdiffeq

3.7 Calibrate hyperparameters N probdiffeq
3.8 Estimate error
3.9 Reject step if error too large probdiffeq

3.10 Complete correction
3.11 Propose new time-step

4. Do something with the probabilistic numerical ODE e
solution
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Conclusion

To build a (probabilistic) numerical algorithm
o Write down the prior belief
© Separate the information from the quantities of interest
o Modify the algorithm according to what the problem dictates
o Be clever about the implementation

More about the “how":

Hennig, Osborne, Kersting. Probabilistic Numerics.
Cambridge University Press, 2022.
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“Why”
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Back to why we are doing this

o Why explicit prior and posterior beliefs?
o Why separate the information from the quantity of interest?
¢ In other words: why take a probabilistic perspective?

Traditional algorithms don't do that.

Here is why they should.
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Image: Stable diffusion
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Partial differential equations

Partial differential equation

Why?
© Spatiotemporal dynamics
o Climate, geophysics, airplanes, and so on

o Require large-scale computations
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Solving PDEs as ODEs

Partial differential equation

—u(t,x) = %u(t, x),  u(0,x) = up(x)

Let X := (xo, ..., xn) be some grid. Track only U(t) = u(t, X) = [u(t, x,)]_,. Approximate
-1 2 -1

Z_U(t) ~ = A U(t) = WU(t)
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Solving PDEs as ODEs (continued)

Solve the PDE as an ODE: U(t) = AU(t), U(0) = uo(X)

Advantages:
o Use any ODE solver
o Use any numerical differentiation method

¢ Move PDE-solving (unfamiliar territory)
to ODE-solving (familiar territory)
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What does this look like for probabilistic numerical solvers?

Posterior distribution _
p(U | U(T) = AU(T), U(0) = uo(X))

compute sequentially as usual.
Disadvantage: Numerical differentiation discards information

There must be a better way!
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We know the way!

We know probabilistic numerical differentiation:
o Prior: p(u) = GP(0, kt ® ky), where (kt @ ki)(t, t', x, X') = ke(t, t')ku(x, X')
o Then, p(82u(-, X) | u(-, X)) = GP(Wu(-, X), ky ® E) = Wu(-, X) + £(+)
¢ The PDE solution is
p(u | 8;u(T, X) = 82u(T, X), u(0, X) = (X))
= p(u, €] 0ru(T, X) = Wu(T, X) + £(T), u(0, X) = uo(X))

o Track differentiation error as model discrepancy
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Calibrate the PDE solver

"PN" = "Probabilistic numerics”; "MOL" =" Method of lines” (non-probabilistic).

PN Relative RMSE

Step-size Ax

PN x2-statistic

Step-size Ax
N

26 275 -4 -3
Step-size At
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272

MOL Relative RMSE

MOL y2-statistic

2-6

25 -4 -3
Step-size At

2-2

104

10°

107



PDE solvers: pipelines of computation

o Discretise spatial domain probabilistically.

o Compute spatiotemporal PDE solution without an unnecessary loss of information.

Kramer, Schmidt, Hennig.
Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations.
AISTATS 2021.

o Don’t throw information

o Especially not if future computations depend on it
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Real-life dynamical systems

v

Guess Solve Guess ¥

\ Compare \ Compare

o We know: y(t) solves y(t) = f(y(t),8), y(0) = yo.
o We know: yx = y(tx) +e=4, e ~N(0,0.1%), k=1,.... K
o What is 67




Parameter estimation

Abbreviate:

m(y | 0) == p(y | {¥(t) = F(¥(tn). 6)}Nog. ¥(t0) = y0.6)

Marginalise ( “average”) likelihood of observations over all IVP solutions:

M(6) = p({y} iy | 6) ~ / (s | y)m(y | 6)dy

Run (gradient-based) MCMC or optimisation schemes.
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Averaging loss functions over probabilistic solutions

Large steps Small steps

X

0.49 0.51

Kersting, Kramer, Schiegg, Daniel, Tiemann, Hennig.
Differentiable likelihoods for fast inversion of ‘likelihood-free’ dynamical systems.
ICML 2020.
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Probabilistic

solvers & MCMC
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40 4

30

Samples

0.0 25 5.0 7.5 10.0 125 15.0 175 20.0

High resolution images:
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10%0
Likelihood

1020

Diffusion

Initial
parameter

1010

Pendulum Length

Tronarp, Bosch, Hennig.

Fenrir: Physics-enhanced regression for initial value problems.

ICML 2022,
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Conclusion

o If you build a statistical model around a numerical algorithm:
Use prior and posterior beliefs as much as you can

© Marginalise over probabilistic solutions

Solve

v

Guess Guess

Compare Compare
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More parameter estimation

o We know: y(t) = f(y(t),B(t)), ¥(0) = v
o We also know: yx = y(tx) + €, p(€) = N(0,02), k=1,...,.K
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How do people usually solve this?

o Assume finitely many features
L
B(t) = Buu(t)
=1

o Tune B by tuning L parameters (G¢)5_;
o Use any optimiser or MCMC. E.g. in the SIRD model:

g L AR
gos . /)
5 %ﬁk_? RERY
o 1 : _ ; : N
0.0-r L t —

Apr Jul Oct
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How do we solve this?

o Prior: p(y) = GP(0, k1), p(B) = GP(0, k2)
o Information: y(T) = f(y(T),B(T)), y(0) = yo, yk = y(tk) + €. k=1,.... K
o Conditioning as in the ODE solver setting
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How do we solve this? (continued)
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Posterior distribution

p(y.B | y(T) = f(y(T).B(T)), vk = y(tx) +€)

* O Data (train/val) ~ —— Posterior | Posterior contact rate ~ ---- MAP estimate
5
= IAN
i oo° e
- l/ L)
n
32
: /
]
S 7

‘e, o
0 Jesoes® 970.0.0.0:019:9:09:9:9'®’
T T T

Jan May Aug Nov
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Model discrepancy in the SIRD model

Problem Solution
Positivity: y(t) > 0 guaranteed Assume y = exp(7), p(¥) = GP(0, k)
SIRD model has issues Model the discrepancy y(T) = f(y(T),8(T)) + &(T)
«c40 Data (train/val) — == Posterior |, R, D Posterior contact rate -=== MAP estimate
5 _ 50
i /'" % 25
3 7%, -/. ng
Jan A;-lg Feb
15 1
2 g
a b
2 g
H /
© ,_0-0-0-0-0-0—
0.0 “e-e-e=
Jan Aug Feb
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Conclusion

o Write down all sources of information

o Discretise and approximate as late as possible

Schmidt, Kramer, Hennig.
A Probabilistic State Space Model for Joint Inference from Differential Equations and Data.
Neurips 2021.
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Epilogue
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Numerical algorithms drive machine learning

But real-life starts when traditional treatments of numerical algorithms stop.

Dissect your algorithm: Results
o Prior distribution o Numerical integration
o Information sources o Numerical differentiation
o Conditioning methods o BOIZ ol
¢ Quantities of interest o (Nonlinear) ODE solvers
Do as the problem dictates. PDEs: Parameter estimation: Multi-source:

Not as the solver requires. [
L]
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